人工智能对商业最重要的贡献是什么?
问十个人,你可能会得到十个不同的答案。但有时,我们可以通过那些多年来一直站在第一线的人的演讲,了解到这项技术将如何发挥作用。
创新的历史
Ed Baker 就是这样一个人。他于 90 年代末在哈佛大学开始求学,后来在斯坦福大学完成研究生学业。他曾在 Facebook 和 Uber 工作,后来还参与了一个名为 Whoop 的健身应用项目。他创立了 Friend.ly 和 Datesite.com,还开发了一款让人们可以"发送热度"来评价朋友和同学的应用。
在这个过程中,他学到了很多关于用户参与度、转化率以及他称之为"病毒循环"的东西。
在最近的一次 TED 演讲中,Baker 回顾了他大学时期的一些创作,主要是约会网站和社交应用(见下文)。
他指出,某些指标可以向利益相关者展示他们的创新如何在受众中流行起来。比如 K 因子,以及详细分析生命周期活动,显示有多少用户转化为二次参与。
反过来,企业可以利用这些数据来制定更好的产品和服务交付及销售策略。
试错和文化倾向
在描述如何衡量客户参与度时,Baker 给出了两个商业决策的例子,这些决策将平淡无奇的结果转变为更显著的成功。
第一个例子是 Facebook 在日本的受众群,他说人们就是不邀请彼此加入。
当他们深入研究这个问题时,发现日本文化对邀请有一种负面看法。因此,正如他指出的,他们改变了文案,参与度就飙升了。
第二个例子是 Uber 在印度的活动,显示用户不愿意输入信用卡信息。当 Uber 更改表单以允许现金支付乘车时,数字大幅上升。
人工智能分析可以提供帮助
这与 AI 有什么关系呢?
嗯,如果没有集中的人为决策以及随之而来的研究和探索,这些成功就不会实现。必须有人弄清楚为什么人们不愿意转化,并尝试修复。另一方面,人工智能可以在完全没有人为参与的情况下做到这一点。
未来的程序将能够进行所有这些调整,不断尝试新事物、新角度和新方法,并找出哪一个更成功。它可能不会像人类那样有所顾虑,就像 Baker 引用 Uber 的 CEO 在一次成功的尝试后据称说的那样:"我既恨你们,又爱你们",指的是团队的冒险精神。
有了 AI,就不会有任何犹豫去尝试新事物。
事实上,你可以说企业多年来一直在这样做,以 A/B 测试的形式。A/B 测试是营销人员采用两种不同的结果并衡量其成功率的方法,它以一种以前未明确表达的方式鼓励这种探索。
换句话说,A/B 测试为接触式营销带来了一定程度的复杂性。
AI 将在所有行业和业务层面上做同样的事情。它将以重大而深远的方式改变游戏规则。这与 Baker 对参与度的解释有关——它建立在人类行为的复杂因素和倾向之上。如果我们有 AI 来为我们解决所有这些问题,我们就不需要成为焦点小组专家。我们只需要知道如何使用这些工具,然后就可以坐下来观看它们施展魔法。
好文章,需要你的鼓励
生成式AI在电商领域发展迅速,但真正的客户信任来自可靠的购物体验。数据显示近70%的在线购物者会放弃购物车,主要因为结账缓慢、隐藏费用等问题。AI基础设施工具正在解决这些信任危机,通过实时库存监控、动态结账优化和智能物流配送,帮助商家在售前、售中、售后各环节提升可靠性,最终将一次性买家转化为忠实客户。
泰国SCBX金融集团开发的DoTA-RAG系统通过动态路由和混合检索技术,成功解决了大规模知识库检索中速度与准确性难以兼得的难题。系统将1500万文档的搜索空间缩小92%,响应时间从100秒降至35秒,正确性评分提升96%,为企业级智能问答系统提供了实用的技术方案。
存储供应商Qumulo发布多租户架构Stratus,为每个租户提供独立的虚拟环境,通过加密技术和租户专用密钥管理系统实现隔离。该统一文件和对象存储软件支持本地、边缘、数据中心及AWS、Azure等云环境部署。Stratus采用加密隔离技术确保敏感数据安全,同时提供任务关键操作所需的灵活性和效率,帮助联邦和企业客户满足合规要求。
中科院和字节跳动联合开发了VGR视觉锚定推理系统,突破了传统AI只能粗略"看图"的局限。该系统能在推理过程中主动关注图片关键区域,像人类一样仔细观察细节后再得出结论。实验显示VGR在图表理解等任务上性能大幅提升,同时计算效率更高,代表了多模态AI"可视化推理"的重要进展。