在生成式 AI 领域热闹非凡的一周里,科技行业正在权衡这位大语言模型领域新玩家带来的影响。中国的 DeepSeek 周一震惊股市,导致曾经的 AI 明星企业 Nvidia 市值蒸发 6000 亿美元。
随着市场逐渐平静并开始恢复,业界开始质疑这些影响的深远意义,以及中国表面上的 AI 复兴是否真如表象所示。
对 DeepSeek 的关注度可见一斑,一位投资分析师甚至不问 ServiceNow 公司的业绩表现,而是询问 CEO Bill McDermott 如何看待在其工作流解决方案中整合大语言模型时对 DeepSeek 的看法。
McDermott 在公司第四季度财报会议上对分析师表示:"这些模型正在以惊人的速度商品化,可能比任何人想象的都要快。"
"这对像我们这样的平台和应用程序供应商来说令人兴奋,因为竞争优势将体现在我们的应用程序、业务流程层面...最终实现业务成果。"
McDermott 向与会者表示,他不仅考虑到了客户的利益,还着眼于更便宜的大语言模型可能为 ServiceNow 带来的"毛利率效益"。
然而,这位 CEO 也表达了谨慎态度:"关于 DeepSeek,我认为我们需要三思而后行。我们坚信要充分了解实际情况,并且我们高度重视负责任的 AI。" 他表示 ServiceNow 团队正在研究 DeepSeek 出现带来的影响。
McDermott 的热情源于 DeepSeek 声称其最新的 R1 模型的开发成本仅为竞争对手的一小部分。While 欧美竞争对手在训练大语言模型上投入数十亿美元,据称 DeepSeek 仅花费约 558 万美元就达到了相当的性能。
DeepSeek R1 推理模型的定价可能比 OpenAI 的 o1 API 便宜 27 倍,但一些人对其声称表示怀疑。
首先,有人认为它是其他供应商提供的大语言模型的一个不错的开源替代品。虽然一些美国供应商宣称他们具有开源特性,但学术研究发现它们并不是真正开放的。
同样,DeepSeek 的开源声明也值得审视。系统集成商和 IT 服务供应商 Version1 指出,虽然 DeepSeek 发布了模型权重,但并未公开其训练数据和训练代码。
在 OpenAI 的 Reddit 讨论组中,有网友分享证据表明 DeepSeek R1 可能在基准答案上训练其模型,从而可能在不生产通用模型的情况下操纵市场。
用户称一些答案与基准答案显示 50-90% 的相似度。讨论组中的其他人质疑使用这种方法是否可能获得任何类似通用大语言模型的效果。
无论其性能和开源声明是否站得住脚,DeepSeek 的安全信誉也受到了打击,因为据称由于正在进行的网络攻击,该公司限制了其模型网络界面的新用户注册。
该公司在其状态页面上的说明称:"由于针对 DeepSeek 服务的大规模恶意攻击,我们暂时限制注册以确保服务持续运行。"
无论对股票估值的影响如何,随着中国继续推进进军西方软件市场,科技用户必将产生更多疑问。
好文章,需要你的鼓励
StepFun团队开发了革命性的Mind-Paced Speaking技术,让AI聊天机器人首次具备边思考边说话的能力。通过双大脑架构,分别负责思考和表达的两个AI模型协同工作,实现零延迟响应的同时保持92.8%的高准确率。这项技术模拟人类大脑机制,让AI对话变得自然流畅,为人机交互开创了全新范式。
谷歌推出类似苹果私有云计算的新平台,让用户在享受先进AI功能的同时保护数据隐私。该平台将复杂AI请求转移到云端处理,确保敏感数据仅用户可见,连谷歌也无法访问。随着AI工具需要更强计算能力,这一方案平衡了隐私保护与性能需求。Pixel 10手机将获得更智能的Magic Cue建议和更多语言的录音转录功能。
微软和哥伦比亚大学联合开发了名为Dyna-Mind的AI训练框架,通过两阶段训练教会AI进行"心理模拟"。该框架让AI学会在行动前进行虚拟试错,显著提升了在复杂规划任务中的表现。在推箱子、虚拟家庭任务和安卓设备操作等测试中,成功率分别达到82.5%、92.5%和40.7%,远超传统方法。这项研究为开发更智能的AI助手奠定了基础。