Perplexity 今天推出 Deep Research 工具,彻底打破了 AI 市场的现状。这款工具能在几分钟内生成全面的研究报告,以远低于企业级常规成本的价格,向用户开放先进的 AI 功能。
Perplexity CEO Aravind Srinivas 在 X 平台上发文表示:"感谢开源!我们将继续提高速度并降低成本。知识应该是普遍可及且有用的,不应该被隐藏在昂贵的订阅计划背后,那只会让企业受益,而不符合人类的利益!"
Perplexity Deep Research 重新定义 AI 定价 — 企业级 AI 能否生存?
这次发布揭示了 AI 定价的一个残酷事实:昂贵的企业订阅可能并非必要。虽然 Anthropic 和 OpenAI 每月收取数千美元的服务费,但 Perplexity 为所有用户每天提供 5 次免费查询。专业版用户每月支付 20 美元即可获得每天 500 次查询额度和更快的处理速度 — 这一价格标准可能会迫使大型 AI 公司解释为什么他们的服务要贵上 100 倍。
尽管整体 IT 预算增长不到 2%,但预计企业在 AI 方面的支出将在 2025 年增长 5.7%。一些企业计划将 AI 支出增加 10% 或更多,平均增加 340 万美元用于 AI 计划。随着 Perplexity 以消费级价格提供类似功能,这些投资现在看来值得商榷。
在典型查询中,Perplexity 的 Deep Research 工具会执行 8 次搜索并参考 42 个来源,在不到 3 分钟内生成一份 1,300 字的报告。
Perplexity Deep Research 如何超越 Google 和 OpenAI
Deep Research 的技术成就表明,昂贵的 AI 服务可能是定价过高而非性能更优。该系统在 SimpleQA 基准测试中获得 93.9% 的准确率,在"人类最后考试"中达到 20.5%,超过了 Google 的 Gemini Thinking 和其他领先模型。
OpenAI 的 Deep Research 在同样的考试中以 26.6% 的成绩领先,但 OpenAI 对该服务收取 200% 的费用。Perplexity 能够以消费级价格提供接近企业级的性能,这引发了人们对 AI 行业定价结构的重要质疑。
为什么 Perplexity 的平价 AI 正在打破先进技术的准入门槛
影响已经超出定价范畴。企业级 AI 在资金充足的公司和其他群体之间造成了数字鸿沟。无法负担数千美元订阅费用的小企业、研究人员和专业人士实际上被排除在先进 AI 功能之外。
Perplexity 的方案改变了这种局面。该工具可以处理从财务分析、市场研究到技术文档和医疗保健洞察等复杂任务。用户可以将研究结果导出为 PDF 或通过 Perplexity 的平台分享,有望替代昂贵的研究订阅和专业工具。
该公司计划将 Deep Research 扩展到 iOS、Android 和 Mac 平台,这可能会加快那些以前认为 AI 工具遥不可及的用户的采用速度。这种广泛的访问可能比任何技术突破都更有价值 — 最终让最需要的用户能够使用先进的 AI 功能。
对于技术决策者来说,这种转变值得关注。为 AI 服务支付高价的公司应该审视这些投资是否带来了超出 Perplexity 现有低价服务的价值。答案可能会重塑组织在 2025 年及以后如何看待 AI 支出。
当 Perplexity 的竞争对手争相为其高价服务辩护时,已有数千用户正在测试 Deep Research 的功能。他们的判断可能比任何基准测试都更重要:在 AI 的新现实中,最好的技术不是最贵的 — 而是人们真正能用得起的。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。