根据上海人工智能实验室的一项新研究表明,小型语言模型 (SLMs) 在推理任务中可以超越领先的大语言模型 (LLMs)。研究人员展示了通过使用适当的工具和测试时扩展技术,一个拥有 10 亿参数的 SLM 可以在复杂的数学基准测试中超越拥有 4050 亿参数的 LLM。
在企业寻求在不同环境和应用中使用这些新模型的情况下,部署 SLM 来处理复杂推理任务可能非常有用。
测试时扩展的解释
测试时扩展 (TTS) 是在推理过程中为 LLM 提供额外计算周期以提高其在各种任务上表现的过程。领先的推理模型,如 OpenAI o1 和 DeepSeek-R1,使用"内部 TTS",这意味着它们通过生成一长串思维链 (CoT) token 来训练"慢思考"。
另一种方法是"外部 TTS",即通过外部帮助来增强模型性能。外部 TTS 适用于将现有模型重新用于推理任务,而无需进一步微调。外部 TTS 设置通常由"策略模型"(生成答案的主要 LLM)和过程奖励模型 (PRM,用于评估策略模型答案) 组成。这两个组件通过采样或搜索方法相互配合。
最简单的设置是"N 选优",其中策略模型生成多个答案,PRM 选择一个或多个最佳答案来组成最终响应。更高级的外部 TTS 方法使用搜索。在"束搜索"中,模型将答案分解为多个步骤。
对于每个步骤,它会采样多个答案并通过 PRM 运行。然后选择一个或多个合适的候选答案并生成下一步答案。在"多样化验证树搜索" (DVTS) 中,模型生成多个答案分支以创建更多样化的候选响应集,然后将它们合成为最终答案。
选择正确的扩展策略
选择正确的 TTS 策略取决于多个因素。研究作者对不同策略模型和 PRM 如何影响 TTS 方法的效率进行了系统研究。
他们的研究表明,效率在很大程度上取决于策略和 PRM 模型。例如,对于小型策略模型,基于搜索的方法优于 N 选优。然而,对于大型策略模型,N 选优更有效,因为这些模型具有更好的推理能力,不需要奖励模型来验证推理的每个步骤。
研究还显示,正确的 TTS 策略取决于问题的难度。例如,对于参数少于 70 亿的小型策略模型,N 选优更适合简单问题,而束搜索更适合困难问题。对于介于 70 亿到 320 亿参数之间的策略模型,多样化树搜索在简单和中等问题上表现良好,束搜索最适合困难问题。但对于大型策略模型 (720 亿参数及以上),N 选优是所有难度级别的最佳方法。
为什么小型模型能够胜过大型模型
基于这些发现,开发人员可以创建计算优化的 TTS 策略,考虑策略模型、PRM 和问题难度,以最好地利用计算预算来解决推理问题。
例如,研究人员发现,使用计算优化的 TTS 策略的 Llama-3.2-3B 模型在 MATH-500 和 AIME24 这两个复杂的数学基准测试中超越了 Llama-3.1-405B。这表明当使用计算优化的 TTS 策略时,一个 SLM 可以超越一个大 135 倍的模型。
在其他实验中,他们发现使用正确的计算优化 TTS 策略,一个拥有 5 亿参数的 Qwen2.5 模型可以超越 GPT-4o。使用相同的策略,DeepSeek-R1 的 15 亿参数蒸馏版本在 MATH-500 和 AIME24 上超越了 o1-preview 和 o1-mini。
当考虑训练和推理计算预算时,研究发现使用计算优化的扩展策略,SLM 可以用少 100-1000 倍的 FLOPS 超越更大的模型。
研究人员的结果表明,计算优化的 TTS 显著增强了语言模型的推理能力。然而,随着策略模型变大,TTS 的改进逐渐减少。
研究人员写道:"这表明 TTS 的有效性直接与策略模型的推理能力相关。具体来说,对于推理能力较弱的模型,扩展测试时计算会带来显著改进,而对于推理能力强的模型,收益有限。"
该研究验证了在应用计算优化的测试时扩展方法时,SLM 可以比更大的模型表现更好。虽然这项研究侧重于数学基准测试,但研究人员计划将研究扩展到编码和化学等其他推理任务。
好文章,需要你的鼓励
2025年,企业技术高管面临巨大压力,需要帮助企业从持续的AI投入中获得回报。大多数高管取得了进展,完善了项目优先级排序方法。然而,CIO仍面临AI相关问题。支离破裂的AI监管环境和宏观经济阻力将继续推动技术高管保持谨慎态度。随着AI采用增长的影响不断显现,一些CIO预期明年将带来劳动力策略变化。
这篇论文提出了CJE(因果法官评估)框架,解决了当前LLM评估中的三大致命问题:AI法官偏好倒置、置信区间失效和离线策略评估失败。通过AutoCal-R校准、SIMCal-W权重稳定和OUA不确定性推理,CJE仅用5%的专家标签就达到了99%的排名准确率,成本降低14倍,为AI评估提供了科学可靠的解决方案。
FinOps基金会周四更新了其FinOps开放成本和使用规范云成本管理工具,新版本1.3更好地支持多供应商工作流。该版本新增了合同承诺和协商协议数据集,增加了跨工作负载成本分摊跟踪列,以及云支出和使用报告时效性和完整性的元数据可见性。随着云和AI采用推动企业IT预算增长,技术供应商正在关注将成本与价值联系起来的努力。大型企业通常使用三到四家云供应商,小企业可能使用两家,同时还有数据中心、SaaS和许可等服务。
NVIDIA团队开发出Fast-FoundationStereo系统,成功解决了立体视觉AI在速度与精度之间的两难选择。通过分而治之的策略,该系统实现了超过10倍的速度提升同时保持高精度,包括知识蒸馏压缩特征提取、神经架构搜索优化成本过滤,以及结构化剪枝精简视差细化。此外,研究团队还构建了包含140万对真实图像的自动伪标注数据集,为立体视觉的实时应用开辟了新道路。