在快速发展的 AI 领域中,从传统的生成式 AI 模型向主动式 AI 系统的转变,标志着全球企业发展的关键时刻。
根据 theCUBE Research 最新分析,在"AI 的下一个前沿"播客中,SiliconANGLE 和 theCUBE 的 George Gilbert 与节目主持人 theCUBE Research 的 Scott Hebner 一起,为理解和引导向主动式 AI 发展的进程提供了重要见解。
"60年来,我们一直通过手动编写规则来构建软件应用程序," Gilbert 说。"主动式 AI 从根本上改变了这一范式,使软件能够自主学习业务流程规则。"
理解主动式 AI
据 Hebner 介绍,主动式 AI 代表着一次变革性的飞跃,超越了生成式 AI 模型的任务导向特性,朝着能够自主决策和推理的目标驱动系统迈进。与基于生成式 AI 的助手不同,主动式代理具有明确的目标,能够理解任务及其更广泛的背景、推理路径和行动后果。
"基于生成式 AI 的助手是任务导向的:给它们一个提示,它们就执行任务," Hebner 说。"但代理能够帮助用户理解并实现特定目标,模拟精确的事件链和结果。"
攀登阶梯:通往主动式 AI 系统的四个阶梯
1. 领域知识 这个旅程始于将 AI 系统植根于特定的领域知识。企业必须对大语言模型进行微调并整合结构化的领域特定数据,使 AI 能够理解金融、医疗或零售行业独特的语言和关系。
2. 决策智能和可解释性 第二阶梯将决策智能整合到 AI 模型中,增强其推理能力。思维链、语义推理和因果 AI 等技术使系统能够分析因果关系并透明地解释其推理过程。
3. 构建 AI 代理 建立领域知识和决策智能后,企业必须选择适当的平台或集成开发环境来构建或获取定制的 AI 代理。
4. 主动式 AI 系统和网络 最后一个阶梯是将各个代理连接成一个有凝聚力的、目标驱动的主动式网络。
持续学习循环 学习循环是将这些阶梯连接在一起的关键组件。这个循环通过利用多代理强化学习和反馈机制确保持续改进,不断完善代理及其底层模型。
战略性渐进之旅 采用主动式 AI 将是一个渐进的过程。企业无需一夜之间彻底改变现有基础设施,而是逐步整合主动式功能。
随着企业向主动式 AI 系统迈进,理解这个结构化的阶梯和它支持的持续学习循环至关重要。那些战略性地拥抱这种演变的企业将引领下一个 AI 驱动转型的时代。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。