在周三的 Cloud Next 大会上,Google 宣布其第七代 Tensor Processing Units (TPU) 即将向云端客户开放租用,可选择 256 芯片或 9,216 芯片的集群方案。
Google 打趣地表示,配备 9,216 个自研 AI 加速器的集群可以提供 42.5 exaFLOPS 的算力,是目前全球最强公开超级计算机——美国的 El Capitan (1.7 exaFLOPS) 的 24 倍算力。
这个数据听起来令人印象深刻,但 Google 的营销团队略过了一个重要细节。42.5 exaFLOPS 的峰值性能是基于 FP8 精度计算的,而 El Cap 在 HPC 专用的 LINPACK 基准测试中实现的 1.74 exaFLOPS 是基于 FP64 精度。实际上,El Cap 的理论峰值性能接近 2.74 FP64 exaFLOPS。
如果换算成 FP8 精度,这台由 AMD 驱动的 HPE-Cray 超级计算机在密集工作负载下的理论峰值性能约为 87 exaFLOPS,而在稀疏工作负载下可达到其两倍。Google 营销将 42.5 exaFLOPS 的 FP8 与 1.74 exaFLOPS 的 FP64 进行对比是不恰当的,实际应该是 42.5 对比至少 87,这意味着 El Capitan 的性能明显优于 9,216 个 TPU v7 芯片组成的集群。所谓 24 倍的说法在我们看来并不准确。
当我们就此询问 Google 时,一位发言人表示,云计算巨头只是在对比他们当时能找到的 El Capitan 最好的数据。这让我们不禁联想到 Gemini AI 的风格。
"我们没有 El Capitan 在 FP8 精度下的持续性能数据,"发言人告诉我们。
"我们做出这个对比的假设是基于 El Capitan 在 AI 工作负载方面展示了他们的最佳算力数据,因为他们也同样关注 AI。
虽然 El Capitan 可能支持 FP8,但在没有额外的持续性能数据的情况下,我们无法进行对比。我们不能简单地假设降低精度就能线性提升峰值性能。此外需要注意的是,Ironwood 可以通过我们的高速 Jupiter 数据中心网络扩展到超过单个集群,最多支持 400,000 个芯片或 43 个 TPU v7x 集群。"
撇开这些对比不谈,Google 最新的代号为 Ironwood 的 TPU 相比去年的 Trillium 有了重大升级。
每个 TPU 都配备了高达 192GB 的高带宽内存 (HBM),带宽在 7.2-7.4TB/s 之间(发布公告中文字部分和图片分别引用了这两个数字)。该芯片主要面向大语言模型 (LLM) 推理设计。
如我们之前讨论过的,内存带宽是推理工作负载的主要瓶颈。更大的内存容量意味着芯片可以容纳更大的模型。在原始浮点性能方面,Google 表示每个液冷 TPU v7 能够达到 4.6 petaFLOPS 的密集 FP8 运算能力。这使其性能与 Nvidia 的 Blackwell B200 处于同一水平。
除了其标志性的张量处理引擎外,Ironwood 还配备了 Google 的 SparseCore,专门用于加速排名和推荐系统中常见的"超大规模嵌入"。
这些芯片的更多细节可以在 The Next Platform 上找到,预计将于今年晚些时候全面上市。
为了构建这些集群,每个 TPU 都配备了专门的芯片间互联 (ICI),Google 表示其双向每链路带宽可达 1.2 terabits/s,比 Trillium 提升了 1.5 倍。
据 Google 表示,9,216 芯片的大型集群在满负载运行时将消耗约 10 兆瓦的功率。Google 没有透露每个芯片的 TDP,但这表明其功耗可能在 700W 到 1kW 之间,与同级别的 GPU 相当。虽然这听起来功耗很大,但 Google 强调这些芯片的效率仍比 2015 年第一代 TPU 提高了 30 倍,性能每瓦比去年的芯片提高了 2 倍。
好文章,需要你的鼓励
Gartner预测,到2030年所有IT工作都将涉及AI技术的使用,这与目前81%的IT工作不使用AI形成鲜明对比。届时25%的IT工作将完全由机器人执行,75%由人类在AI辅助下完成。尽管AI将取代部分入门级IT职位,但Gartner认为不会出现大规模失业潮,目前仅1%的失业由AI造成。研究显示65%的公司在AI投资上亏损,而世界经济论坛预计AI到2030年创造的就业机会将比消除的多7800万个。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
人工智能正从软件故事转向AI工厂基础,芯片、数据管道和网络协同工作形成数字化生产系统。这种新兴模式重新定义了性能衡量标准和跨行业价值创造方式。AI工厂将定制半导体、低延迟结构和大规模数据仪器整合为实时反馈循环,产生竞争优势。博通、英伟达和IBM正在引领这一转变,通过长期定制芯片合同和企业遥测技术,将传统体验转化为活跃的数字生态系统。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。