在最近一期由 LinkedIn 联合创始人 Reid Hoffman 共同主持的 Possible 播客节目中,Google DeepMind 的 CEO Demis Hassabis 表示,Google 计划将其 Gemini AI 模型与 Veo 视频生成模型最终整合在一起,以提升前者对物理世界的理解能力。
Hassabis 说道:"我们从一开始就将 Gemini(我们的基础模型)设计为多模态的。我们这样做是因为我们对通用数字助手有一个愿景,这个助手能够在现实世界中真正帮助到你。"
AI 行业正在逐步向"全能"模型发展——这类模型能够理解和合成多种形式的媒体内容。Google 最新的 Gemini 模型可以生成音频、图像和文本,而 OpenAI 在 ChatGPT 中的默认模型也能原生创建图像——当然也包括吉卜力工作室风格的艺术作品。Amazon 也宣布计划在今年晚些时候推出一个"任意转换"模型。
这些全能模型需要大量的训练数据——包括图像、视频、音频、文本等。Hassabis 暗示 Veo 的视频数据主要来自 Google 旗下的 YouTube 平台。
Hassabis 表示:"基本上,通过观看大量的 YouTube 视频,Veo 2 可以理解世界的物理规律。"
Google 此前向 TechCrunch 表示,其模型"可能"会按照与 YouTube 创作者的协议,使用"部分" YouTube 内容进行训练。据报道,Google 去年部分扩展了其服务条款,以允许公司获取更多数据来训练其 AI 模型。
好文章,需要你的鼓励
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。