如果当前趋势持续不变,用于训练和运行 AI 的数据中心很快可能包含数百万个芯片,花费数千亿美元,并且所需电力相当于一个大城市的电网。
这一切根据来自 Georgetown、Epoch AI 和 Rand 的研究人员最新的一项研究,该研究考察了全球 AI 数据中心从 2019 年至今年的发展轨迹。联合作者整理并分析了超过 500 个 AI 数据中心项目的数据集,发现尽管数据中心的计算性能每年翻倍以上,电力需求和资本支出也同样以这样速度增长。
这一发现表明,在未来十年内建设支持 AI 技术发展的必要基础设施将面临巨大挑战。
最近曾表示全球约有 10% 的人口正在使用其 ChatGPT 平台的 OpenAI,与 SoftBank 等公司建立合作伙伴关系,计划筹集高达 5000 亿美元,在美国( and possibly elsewhere )建立一个 AI 数据中心网络。其他科技巨头,包括 Microsoft、Google 和 AWS,单在今年内就共同承诺花费数亿美元扩大数据中心布局。
根据 Georgetown、Epoch 和 Rand 的研究,从 2019 年到 2025 年,像 xAI 的 Colossus(价格约为 70 亿美元)这样的 AI 数据中心硬件成本每年增长 1.9 倍,而电力需求在同期每年增长 2 倍。(Colossus 预计消耗 300 兆瓦的电力,相当于 250,000 个家庭的用电量。)
研究还发现,过去五年数据中心的能效大幅提升,其中一个关键指标 — 每瓦电力计算性能 — 从 2019 年到 2025 年每年增长 1.34 倍。但这些改进不足以抵消不断增长的电力需求。到 2030 年 6 月,领先的 AI 数据中心可能拥有 200 万个 AI 芯片,花费 2000 亿美元,并需要 9 吉瓦的电力 — 大约相当于九座核反应堆的发电量。
AI 数据中心对电力的需求将大大加剧电网负担这一事实并不新鲜。根据 Wells Fargo 最近的一项分析,数据中心的能耗预计到 2030 年将增长 20%。这可能将依赖于多变天气的可再生能源推向极限,从而促使非可再生、环境污染严重的电力来源(如化石燃料)的使用增加。
AI 数据中心还带来其他环境风险,例如高水耗,并占用宝贵的不动产,同时侵蚀州税基。总部位于华盛顿特区的非营利组织 Good Jobs First 的一项研究估计,由于过于慷慨的激励措施,至少有 10 个州每年因数据中心而损失超过 1 亿美元的税收收入。
当然,也有可能这些预测未必会实现,或者时间尺度存在偏差。一些超大规模云服务提供商,如 AWS 和 Microsoft,最近几周已减少数据中心项目的建设。Cowen 分析师在四月中旬给投资者的一份报告中观察到,在 2025 年初数据中心市场出现了 “cooling”,这表明业界对于不可持续扩张的担忧。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。