如果当前趋势持续不变,用于训练和运行 AI 的数据中心很快可能包含数百万个芯片,花费数千亿美元,并且所需电力相当于一个大城市的电网。
这一切根据来自 Georgetown、Epoch AI 和 Rand 的研究人员最新的一项研究,该研究考察了全球 AI 数据中心从 2019 年至今年的发展轨迹。联合作者整理并分析了超过 500 个 AI 数据中心项目的数据集,发现尽管数据中心的计算性能每年翻倍以上,电力需求和资本支出也同样以这样速度增长。
这一发现表明,在未来十年内建设支持 AI 技术发展的必要基础设施将面临巨大挑战。
最近曾表示全球约有 10% 的人口正在使用其 ChatGPT 平台的 OpenAI,与 SoftBank 等公司建立合作伙伴关系,计划筹集高达 5000 亿美元,在美国( and possibly elsewhere )建立一个 AI 数据中心网络。其他科技巨头,包括 Microsoft、Google 和 AWS,单在今年内就共同承诺花费数亿美元扩大数据中心布局。
根据 Georgetown、Epoch 和 Rand 的研究,从 2019 年到 2025 年,像 xAI 的 Colossus(价格约为 70 亿美元)这样的 AI 数据中心硬件成本每年增长 1.9 倍,而电力需求在同期每年增长 2 倍。(Colossus 预计消耗 300 兆瓦的电力,相当于 250,000 个家庭的用电量。)
研究还发现,过去五年数据中心的能效大幅提升,其中一个关键指标 — 每瓦电力计算性能 — 从 2019 年到 2025 年每年增长 1.34 倍。但这些改进不足以抵消不断增长的电力需求。到 2030 年 6 月,领先的 AI 数据中心可能拥有 200 万个 AI 芯片,花费 2000 亿美元,并需要 9 吉瓦的电力 — 大约相当于九座核反应堆的发电量。
AI 数据中心对电力的需求将大大加剧电网负担这一事实并不新鲜。根据 Wells Fargo 最近的一项分析,数据中心的能耗预计到 2030 年将增长 20%。这可能将依赖于多变天气的可再生能源推向极限,从而促使非可再生、环境污染严重的电力来源(如化石燃料)的使用增加。
AI 数据中心还带来其他环境风险,例如高水耗,并占用宝贵的不动产,同时侵蚀州税基。总部位于华盛顿特区的非营利组织 Good Jobs First 的一项研究估计,由于过于慷慨的激励措施,至少有 10 个州每年因数据中心而损失超过 1 亿美元的税收收入。
当然,也有可能这些预测未必会实现,或者时间尺度存在偏差。一些超大规模云服务提供商,如 AWS 和 Microsoft,最近几周已减少数据中心项目的建设。Cowen 分析师在四月中旬给投资者的一份报告中观察到,在 2025 年初数据中心市场出现了 “cooling”,这表明业界对于不可持续扩张的担忧。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。