2017 年,Raghav Gupta 为了解决个人问题而开始探索:他希望轻松享用童年时吃到的家常菜,而不必花时间烹饪,也不用花钱订外卖或者聘请私人厨师。他选择了机器人技术,这也促使他创立了初创公司 Posha。
Posha 曾参加过 TechCrunch Startup Battlefield,公司开发的台面机器人利用计算机视觉技术来烹饪美食。用户只需浏览食谱列表,选择想要的菜谱,加入要求量的食材,机器人便会从开始到完成全程制作这道菜。
Gupta 告诉 TechCrunch,该系统在设计上既可定制又宽容容错,因此用户可以进行食材替换,即使没有精确称量食材,Posha 依然能正常工作。
Gupta 表示,“它就像一台制作咖啡的机器,只不过是为食物服务。比如当你想喝一杯咖啡时,会在咖啡机上选择一种咖啡,用不同的容器分别加入咖啡豆、糖和牛奶,轻点‘萃取’键,一杯咖啡就现成了。Posha 也做类似的事情,不过是针对食物而设计。”
虽然将咖啡机与 Posha 相比是个不错的比喻,但还不完全贴切,因为使用 Posha 需要比使用咖啡机付出更多劳力。
虽然 Posha 在烹饪过程中完成了大量工作,但消费者依然要主动参与采购食材和事前准备工作。尤其是切菜环节,往往会耗费配方烹饪时长中的相当一部分。
Gupta 也承认,有些人不会选择一个依然要求他们自己动手烹饪的解决方案。他表示,到目前为止,Posha 在那些一周做饭两到六次、希望在某些晚上减轻负担的用户中获得了最大成功。
Gupta 说,“这些人每天都要在厨房花上一个小时,决定吃什么、采购食材、烹饪以及清理后续工作。而我们帮助他们至少节省 70% 的时间,使他们每天只需花大约 10 至 20 分钟。”
Gupta 称,Posha 最初名为 Nymble,原本只是一个机器人臂,但在 Bosch 的加速器项目中的经历促使他们改变方向。他们了解到消费者不希望有一个在厨房内四处移动或难以清洁的设备。此后,公司一直与早期客户保持紧密联系。
Gupta 说,“从第一天起,我们就非常专注并痴迷于客户。我们不用 Zendesk 与他们聊天,而是通过 WhatsApp 和超过 100 位客户保持对话。大多数客户都认识我本人。疫情期间,我甚至搬到了美国,只为了离客户更近。”这种方式虽然难以扩展,但目前对 Posha 来说效果显著。
Gupta 表示,到目前为止,Posha 的 1750 美元直销台面设备主要依靠口碑营销。最近,Posha 完成了一轮 800 万美元的 A 轮融资,由 Accel 领投,现有投资者 Xeed Ventures、Waterbridge Ventures 和 Flipkart 联合创始人 Binny Bansal 等也参与其中。
Gupta 表示,Posha 将利用这些资金继续开发产品。具体来说,公司希望增加更多食谱选项,并赋予用户提出食谱创意的能力,由生成式 AI 将这些创意快速转化为操作说明并整合进设备中。
该公司于 2025 年 1 月推出了 Posha 机器人,目前首批产品已售罄,第二批产品现正接受预订。
Gupta 说,“如果你看看微波炉、洗碗机、冰箱,在某个时间点,这些设备最初都是台面设备,但随着时间的推移,它们在消费者家庭中变得不可或缺,以至于建筑商开始在房屋中直接预装这些设备。我们相信,Posha 在不久的将来也会拥有相同的命运。”
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。