金融科技巨头 Stripe 周三在其年度 Stripe Sessions 用户活动上公布了一系列新产品发布。其中亮点包括:支付领域全新 AI 基础模型;由稳定币驱动的账户;全新的 Orchestration 解决方案,以及与芯片巨头 Nvidia 近期达成的迁移合作。
Stripe 的支付基础模型经过数百亿笔交易的数据训练,Stripe 信息主管 Emily Glassberg Sands 介绍说,因此它“捕捉到了每笔支付中数百个细微的信号”,这些信号是其他模型容易忽略的。
其中一个应用场景是改进欺诈检测。Stripe 之前的模型通过“逐步”减少信用卡测试攻击,在两年内将该类攻击降低了 80%。信用卡测试攻击是一种欺诈行为,攻击者尝试检测被盗信用卡信息是否有效,以便利用这些信息进行购物。
该公司宣称,其全新基础模型几乎在一夜之间就将大企业遭受此类攻击的检测率提高了 64%。
她补充道:“过去,我们无法充分利用海量数据。现在,我们可以。”
当然,Stripe 并不是唯一一家利用 AI 构建欺诈检测模型的金融科技公司。仅举一例,Sardine 将自身描述为专注于欺诈、合规及信用承保的 AI 风险平台,今年二月就由 Activant Capital 领投完成了 7000 万美元的 C 轮融资。
在接受 TechCrunch 采访时,Stripe 产品与业务总裁 Will Gaybrick 表示,Stripe 的通用模型采用自监督学习,因此能够自主发掘特征。
他说:“我们在机器学习中一再发现,通用模型的表现更胜一筹。其主要原因在于敏捷性。它在性能上更优,且能更好地适应欺诈模式的变化。”
此外,Stripe 周三还宣布计划通过与 Ramp、Squads 以及 Airtm 等初创企业合作,为各国企业引入由稳定币支持的多币种卡。借助这些卡片,各国企业将能够“首次在同一货币体系下运营”,据各公司称。
这一举措距离 Stripe 完成对稳定币平台 Bridge 的收购仅三个月。
借助 Orchestration 解决方案,Stripe 表示能更好地帮助企业通过仪表板设置、管理并优化多个支付提供商间的表现,无论企业是否使用 Stripe 作为支付处理器。
在此次活动中,Stripe 还提及了多家使用其结算产品的 AI 公司,包括 Windsurf、OpenAI、Anthropic、Cursor、Perplexity 以及 Eleven Labs。
近期,根据 Stripe 收入自动化主管 Vivek Sharma 的介绍,Nvidia 在六周内将其“全部订阅用户群”成功迁移至 Stripe Billing——而金融科技公司称通常此类迁移需要数月完成,这一过程创下了“Stripe Billing 迁移最快纪录”。(Nvidia 早前已是 Stripe Payments 的客户。)
Stripe 周三的其他公告还包括:
支持 25 种新支付方式,包括 UPI 与 PIX,使其总支付方式超过 125 种。
Klarna 将在今年夏天登录 Stripe 的消费者支付产品 Link。
Stripe Terminal 现已支持使用第三方硬件,首发伙伴为 Verifone。
Managed Payments —— 一项全新的商家记录服务,为企业进入新市场提供所需的一切,包括代为处理全球税务、欺诈防范、争议管理、履约等。
Smart Disputes 利用 AI 自动化处理争议管理。
Stripe Tax 服务现已覆盖 102 个国家,较去年的 57 个实现大幅增长,并实现了从监控、注册到收税、申报的全税务生命周期自动化。
Global Payouts 允许企业只需使用电子邮件地址即可向客户、外包人员及其他第三方完成支付。
好文章,需要你的鼓励
企业平均使用100-300个SaaS应用,导致流程分散、数据孤岛和成本激增。Nintex CEO认为,低代码开发、AI和自动化平台的融合正推动CIO从"购买"转向"构建"思维。企业可创建定制应用解决特定问题,整合技术栈。AI代理成为产品战略核心,能改善构建体验并实现流程互联。随着AI技术发展,采购决策权重新回归CIO,通过统一平台实现更好的治理模式。
DeepSeek-AI团队通过创新的软硬件协同设计,仅用2048张GPU训练出性能卓越的DeepSeek-V3大语言模型,挑战了AI训练需要海量资源的传统观念。该研究采用多头潜在注意力、专家混合架构、FP8低精度训练等技术,大幅提升内存效率和计算性能,为AI技术的民主化和可持续发展提供了新思路。
Commvault调整领导团队并与私有云供应商Platform9达成新合作。Alan Atkinson从首席合作伙伴官晋升为首席业务发展官,负责构建战略技术和安全合作伙伴关系。Michelle Graff被聘为全球合作伙伴和渠道高级副总裁。Platform9将Commvault的虚拟机和Kubernetes工作负载保护功能集成到其私有云解决方案中,提供无代理虚拟机备份恢复、应用一致性备份和容器保护等功能。
加拿大女王大学研究团队首次系统评估了大型视频语言模型的因果推理能力,发现即使最先进的AI在理解视频中事件因果关系方面表现极差,大多数模型准确率甚至低于随机猜测。研究创建了全球首个视频因果推理基准VCRBench,并提出了识别-推理分解法(RRD),通过任务分解显著提升了AI性能,最高改善幅度达25.2%。