OpenAI CEO Sam Altman 表示,公司并没有具体的总体规划,但确实希望开发一款类似订阅操作系统的产品——不过这将是为 AI 打造的,并且能够整合你一生中所有体验的模型。
这位 AI 界的“问题制造者”在 5 月初由风险投资公司 Sequoia 举办的 AI Ascent 2025 活动的问答环节中提出了这些想法。
环节中,一位观众提问新创企业如何才能避免与 OpenAI 直接竞争,Altman 回答说:“我们希望成为人们核心的 AI 订阅服务。”
“其中的一部分将类似于你在 ChatGPT 内所做的事情。但大部分我们希望能构建得越来越智能。我们还会有这些交互界面,就像未来设备一样,未来会有一些类似操作系统的东西,”他补充道。
Altman 对该计划如何实现细节提供得并不多。
“我们目前还没有确切搞清楚……到底是哪种 API 或 SDK,或者你想怎样称呼它……才能真正成为我们的平台,”他说道,并在之后向观众保证,“可能我们需要尝试几次,但我们终会做到。”
无论公司最终开发出什么,他都表达了这样的希望:借助该产品,“将会创造惊人的财富”,因为“有大量的东西可以构建”,与 OpenAI 所推出的产品并驾齐驱。
当被问及 OpenAI 是否计划定制 AI 模型时,Altman 表示,他的“理想境界”是构建一个推理模型,“拥有一万亿 Token 的上下文,你可以将你的一生全都注入其中。”
这样的模型将能知晓“你一生中每一次对话、你读过的每一本书、你接收过的每封邮件。你曾看过的所有内容都会存入其中,加上来自其他来源的所有数据。而且你知道,你的一生都在不断地为这上下文续写新的篇章。”
如果你对这种表述感到不安,我们有好消息也有坏消息。好消息是,Altman 承认 OpenAI 目前无法构建这样的模型;坏消息是他表示:“任何其他做法都是对这种理想境界的妥协。”
这一计划看起来也更像是一种理想,而非现实,因为当被问及 OpenAI 是否已有具体计划如何使用他们正在寻求的大量投资时,他回答道:“我们会努力设计出优秀的模型并推出好的产品,但除此之外并没有其他总体规划。”
他说,更宏大的计划是行不通的,因为创业者必须从一个“极其复杂的事物”倒推工作。
他更倾向于“做好眼前的事”,这对 OpenAI 来说目前意味着要构建“大量的 AI 基础设施”以及“不断提升模型表现”。这位 CEO 还希望“打造一个卓越的上层产品,就像面向消费者的产品及其所有组成部分。”
至于具体细节?他会在前进中逐步厘清。
“我们以灵活著称,会根据世界的变化调整策略,”Altman 说,“我们明年要构建的产品现在可能连我们都还没想到。”
这听起来颇像是全球领先的 AI 公司正随时根据情况临时应变。
活在这个时代,真是妙不可言。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。