科技公司们寄予厚望,认为核能可以提供实现他们 AI 规划所需的电力。但数据中心需要明天就供电,而核工业向来以反应迟缓著称。
Trey Lauderdale 相信 AI 可以赋予核能所需的速度。
Lauderdale 对核能的痴迷起源于他身边的点滴。在他居住的加利福尼亚州 San Luis Obispo,经常遇到在 Diablo Canyon 核电站工作的人员。他说:“他们就像我们橄榄球业余队伍的教练。”
在与他们交谈中,他了解到核电站积压了无数文档。据他说,位于 San Luis Obispo 附近的 Diablo Canyon 拥有大约 20 亿页的文件。作为连续创业的医疗保健从业者,Lauderdale 隐约觉得 AI 能协助核工业解决文档繁多的问题。
大约一年半前,Lauderdale 创立了 Atomic Canyon,最初以自有资金进行启动。这家初创公司应用 AI 帮助工程师、维护技术人员和合规检查员快速找到所需文件。
2024 年底,该初创公司与 Diablo Canyon 签订了一份合作协议。Lauderdale 表示,这笔交易引来了其它核能公司的咨询。“那时我意识到,作为一名创业者,我们到了需要募集一轮资金的阶段。”
Atomic Canyon 完成了一轮 700 万美元的种子融资,由 Energy Impact Partners 领投,该公司对此仅向 TechCrunch 透露了独家消息。参与投资的还有 Commonweal Ventures、Plug and Play Ventures、Tower Research Ventures、Wischoff Ventures 以及此前的天使投资人。
最初,Atomic Canyon 的 AI 工程师曾测试过多种模型,但效果并不理想。Lauderdale 说:“我们很快发现,AI 在遇到这些核能相关词汇时容易产生虚构。因为它接触到的缩写实例太少。”
然而,构建全新 AI 模型需要庞大的计算能力。于是 Lauderdale 设法说服 Oak Ridge 国家实验室安排会面,该实验室不仅从事核研究,还拥有全球第二快的超级计算机。实验室对这一想法颇感兴趣,并向 Atomic Canyon 提供了 20,000 GPU 小时的计算资源。
Atomic Canyon 的模型采用句子嵌入技术,这种方法特别适合对文件进行索引。它利用检索增强生成(RAG)技术,使核电站文件实现可搜索。RAG 通过大语言模型来生成查询响应,但它要求这些模型参考具体文件,以减少虚构现象。
目前,Atomic Canyon 主要专注于文件搜索,部分原因是风险较低。
Lauderdale 解释道:“我们之所以开始对文件标题进行生成式尝试,其中一个原因是因为如果出错,可能只会让人有点沮丧,并不会对电站内人员构成风险。”
最终,Lauderdale 设想 Atomic Canyon 的 AI 能生成文件的‘初稿’,并附上参考文献。“在这个过程中,总会有人类在环节中,”他说。
不过,Lauderdale 并未为这一计划设定明确的时间表。他指出,搜索功能是“基础层”,必须首先解决。而且,鉴于核行业文档数量庞大,他补充道,“仅文件搜索这一块就有着悠长的发展道路。”
好文章,需要你的鼓励
这项研究开发了CaptionQA系统,通过测试AI生成的图片描述能否支持实际任务来评估其真正价值。研究发现即使最先进的AI模型在图片描述实用性方面也存在显著不足,描述质量比直接看图时下降9%-40%。研究涵盖自然、文档、电商、机器人四个领域,为AI技术的实用性评估提供了新标准。
AI改变的远不止一间课堂,而是学生的学习方式、未来的职场场景和社会对工作者能力的要求,整个商业文明中的每一位参与者,都将被推着一起改变。
以色列理工学院研究团队提出了一种将专家混合模型融入YOLOv9目标检测的创新方法。该方法让多个专门化的YOLOv9-T专家分工协作,通过智能路由器动态选择最适合的专家处理不同类型图像。实验显示,在COCO数据集上平均精度提升超过10%,在VisDrone数据集上提升近30%,证明了"分工合作"比单一模型更有效,为AI视觉系统提供了新思路。