科技公司们寄予厚望,认为核能可以提供实现他们 AI 规划所需的电力。但数据中心需要明天就供电,而核工业向来以反应迟缓著称。
Trey Lauderdale 相信 AI 可以赋予核能所需的速度。
Lauderdale 对核能的痴迷起源于他身边的点滴。在他居住的加利福尼亚州 San Luis Obispo,经常遇到在 Diablo Canyon 核电站工作的人员。他说:“他们就像我们橄榄球业余队伍的教练。”
在与他们交谈中,他了解到核电站积压了无数文档。据他说,位于 San Luis Obispo 附近的 Diablo Canyon 拥有大约 20 亿页的文件。作为连续创业的医疗保健从业者,Lauderdale 隐约觉得 AI 能协助核工业解决文档繁多的问题。
大约一年半前,Lauderdale 创立了 Atomic Canyon,最初以自有资金进行启动。这家初创公司应用 AI 帮助工程师、维护技术人员和合规检查员快速找到所需文件。
2024 年底,该初创公司与 Diablo Canyon 签订了一份合作协议。Lauderdale 表示,这笔交易引来了其它核能公司的咨询。“那时我意识到,作为一名创业者,我们到了需要募集一轮资金的阶段。”
Atomic Canyon 完成了一轮 700 万美元的种子融资,由 Energy Impact Partners 领投,该公司对此仅向 TechCrunch 透露了独家消息。参与投资的还有 Commonweal Ventures、Plug and Play Ventures、Tower Research Ventures、Wischoff Ventures 以及此前的天使投资人。
最初,Atomic Canyon 的 AI 工程师曾测试过多种模型,但效果并不理想。Lauderdale 说:“我们很快发现,AI 在遇到这些核能相关词汇时容易产生虚构。因为它接触到的缩写实例太少。”
然而,构建全新 AI 模型需要庞大的计算能力。于是 Lauderdale 设法说服 Oak Ridge 国家实验室安排会面,该实验室不仅从事核研究,还拥有全球第二快的超级计算机。实验室对这一想法颇感兴趣,并向 Atomic Canyon 提供了 20,000 GPU 小时的计算资源。
Atomic Canyon 的模型采用句子嵌入技术,这种方法特别适合对文件进行索引。它利用检索增强生成(RAG)技术,使核电站文件实现可搜索。RAG 通过大语言模型来生成查询响应,但它要求这些模型参考具体文件,以减少虚构现象。
目前,Atomic Canyon 主要专注于文件搜索,部分原因是风险较低。
Lauderdale 解释道:“我们之所以开始对文件标题进行生成式尝试,其中一个原因是因为如果出错,可能只会让人有点沮丧,并不会对电站内人员构成风险。”
最终,Lauderdale 设想 Atomic Canyon 的 AI 能生成文件的‘初稿’,并附上参考文献。“在这个过程中,总会有人类在环节中,”他说。
不过,Lauderdale 并未为这一计划设定明确的时间表。他指出,搜索功能是“基础层”,必须首先解决。而且,鉴于核行业文档数量庞大,他补充道,“仅文件搜索这一块就有着悠长的发展道路。”
好文章,需要你的鼓励
CPU架构讨论常聚焦于不同指令集的竞争,但实际上在单一系统中使用多种CPU架构已成常态。x86、Arm和RISC-V各有优劣,AI技术的兴起更推动了对性能功耗比的极致需求。当前x86仍主导PC和服务器市场,Arm凭借庞大生态系统在移动和嵌入式领域领先,RISC-V作为开源架构展现巨大潜力。未来芯片设计将更多采用异构计算,多种架构协同工作成为趋势。
延世大学研究团队通过分析AI推理过程中的信息密度模式,发现成功的AI推理遵循特定规律:局部信息分布平稳但全局可以不均匀。这一发现颠覆了传统的均匀信息密度假说在AI领域的应用,为构建更可靠的AI推理系统提供了新思路,在数学竞赛等高难度任务中显著提升了AI的推理准确率。
Vast Data与云计算公司CoreWeave签署了价值11.7亿美元的多年期软件许可协议,这标志着AI基础设施存储市场的重要转折点。该协议涵盖Vast Data的通用存储层及高级数据平台服务,将帮助CoreWeave提供更全面的AI服务。业内专家认为,随着AI集群规模不断扩大,存储系统在AI基础设施中的占比可能从目前的1.9%提升至3-5%,未来五年全球AI存储市场规模将达到900亿至2000亿美元。
蒙特利尔大学团队发现让AI"分段思考"的革命性方法Delethink,通过模仿人类推理模式将长篇思考分解为固定长度块,仅保留关键信息摘要。1.5B小模型击败传统大模型,训练成本降至四分之一,计算复杂度从平方级降为线性级,能处理十万词汇超长推理,为高效AI推理开辟新道路。