企业AI服务的编排框架承担着多重功能。它们不仅规定了应用程序或智能体如何协同工作,还应允许管理员管理工作流程和智能体,并对系统进行审计。
随着企业开始扩展AI服务并将其投入生产,构建可管理、可追踪、可审计且稳健的管道,确保智能体完全按预期运行至关重要。如果缺乏这些控制措施,组织可能无法了解AI系统中发生的情况,只有在出现问题或违反法规时才会发现问题,届时为时已晚。
企业编排公司Airia的总裁Kevin Kiley在接受VentureBeat采访时表示,框架必须包含可审计性和可追溯性。
"拥有这种可观测性并能够回顾审计日志,显示在什么时间点提供了什么信息,这一点至关重要,"Kiley说。"你必须知道这是恶意行为者、不知道自己在分享信息的内部员工,还是系统出现了幻觉。你需要有这样的记录。"
理想情况下,稳健性和审计追踪应该在AI系统的早期阶段就内置其中。在部署前了解新AI应用程序或智能体的潜在风险,并确保它们持续符合标准,有助于缓解将AI投入生产的担忧。
然而,组织最初在设计系统时并未考虑可追溯性和可审计性。许多AI试点项目开始时都是实验性的,没有编排层或审计追踪。
企业现在面临的重大问题是如何管理所有智能体和应用程序,确保管道保持稳健,当出现问题时能够知道出了什么问题并监控AI性能。
选择合适的方法
专家表示,在构建任何AI应用程序之前,组织需要先清点其数据。如果公司知道允许AI系统访问哪些数据,以及用哪些数据对模型进行了微调,他们就有了比较长期性能的基准。
DataDog产品副总裁Yrieix Garnier在接受VentureBeat采访时说:"当你运行这些AI系统时,更多的是关于我可以验证什么样的数据来确保我的系统实际运行正常。这实际上很难做到,要理解我有正确的参考系统来验证AI解决方案。"
一旦组织识别并定位其数据,就需要建立数据集版本控制——本质上是分配时间戳或版本号——以使实验可重现并了解模型发生了什么变化。这些数据集和模型、使用这些特定模型或智能体的任何应用程序、授权用户和基准运行时数据都可以加载到编排或可观测性平台中。
就像选择构建基础模型时一样,编排团队需要考虑透明度和开放性。虽然一些闭源编排系统具有众多优势,但更多开源平台也可能提供一些企业重视的好处,比如提高决策系统的可见性。
MLFlow、LangChain和Grafana等开源平台为智能体和模型提供精细和灵活的指令和监控。企业可以选择通过单一的端到端平台(如DataDog)开发其AI管道,或使用AWS的各种互连工具。
企业的另一个考虑因素是接入将智能体和应用程序响应映射到合规工具或负责任AI政策的系统。AWS和微软都提供跟踪AI工具以及它们与用户设置的防护栏和其他政策的遵循程度的服务。
Kiley表示,企业在构建这些可靠管道时的一个考虑因素是选择更透明的系统。对于Kiley来说,完全看不到AI系统如何工作是行不通的。
"无论用例或行业是什么,你都会遇到需要灵活性的情况,而封闭系统是行不通的。市场上有一些提供商拥有出色的工具,但那更像是一个黑盒子。我不知道它是如何得出这些决定的。我无法在我可能想要的时候进行拦截或干预,"他说。
好文章,需要你的鼓励
本文探讨了AI发展的未来趋势,详细分析了六条有望实现通用人工智能(AGI)的技术路径。随着生成式AI和大语言模型面临发展瓶颈,业界开始将目光转向其他AI发展方向。这六条路径包括神经符号AI、神经形态AI、具身AI、多智能体AI、以人为中心的AI和量子AI。每种路径都有其独特优势和挑战,可能单独或组合推动AI进入下一个发展阶段,最终实现与人类智能相当的AGI系统。
约翰霍普金斯大学研究团队发现VAR模型的马尔可夫变体本质上是离散扩散模型,提出SRDD方法。通过应用扩散模型技术如分类器自由引导、令牌重采样等,SRDD相比VAR在图像质量上提升15-20%,同时具备更好的零样本性能。这项研究架起了自回归模型与扩散模型的理论桥梁,为视觉生成技术发展开启新方向。
培生公司第三季度销售增长加速,并预示年底表现更强劲,但其AI应用可能是更重要的发展。该公司虚拟学习部门销售额激增17%,学生注册人数攀升。培生运营的在线学校将AI工具嵌入课程材料中,公司表示有越来越多证据显示这些工具帮助学生取得更好成绩。公司推出了AI学习内容组合,包括AI素养模块和融合人工导师与AI学习工具的视频平台。
微软亚洲研究院推出CAD-Tokenizer技术,首次实现AI通过自然语言指令进行3D模型设计和编辑的统一处理。该技术通过专门的CAD分词器和原语级理解机制,让AI能像设计师一样理解设计逻辑,大幅提升了设计精度和效率,有望推动工业设计的民主化进程。