在给定两个端点和特定时间段内的复合年增长率时,预测中间各时间点的具体情况并不如表面看起来那么简单。这正是复合年增长率(CAGR)的局限性所在。
数学上,连接两个端点的曲线有无数种可能性,但在实际计算引擎、服务器或资金统计的物理世界中,两个端点之间数值的概率分布相对有限。例如,收入通常不会在五年内先增长10倍然后再回落。
过去几年,我们一直在与AMD首席执行官苏姿丰就数据中心AI计算引擎收入预测进行深入交流。她不断修正和完善AMD对未来几年的市场预期。与英伟达不公开此类预测不同,AMD至少告诉了我们它对2023年至2028年AI计算引擎市场的看法。
让我们回顾一下苏姿丰自2023年6月首次提及这一话题以来的市场预测变化。
在2023年6月的数据中心和AI技术发布会上,苏姿丰做出了首次预测:数据中心AI加速器市场将从2023年的300亿美元增长到2027年的超过1500亿美元,复合年增长率超过50%。这个预测涵盖了GPU、FPGA等加速器产品。
仅仅六个月后,随着生成式AI热潮的兴起,预测发生了显著变化。2023年底,苏姿丰将2023年的市场规模预测上调至450亿美元,2027年预测上调至超过4000亿美元,复合年增长率超过70%。
到2024年10月,预测再次调整:2023年AI加速器销售额确实达到450亿美元,但2028年的预测调整为超过5000亿美元,复合年增长率回调至60%以上。
在最近的Advancing AI活动中,苏姿丰提供了更详细的市场细分数据,将AI训练和AI推理市场分开预测。她特别强调,AI推理将成为未来的主要驱动力,预计年增长率超过80%,2026年推理加速器支出将超过训练加速器支出。
根据新数据,2028年AI加速器市场规模接近6000亿美元,2023年至2028年的复合年增长率为67.5%。
将这些数字放在更大的背景下考虑:如果按照2.1倍的系统倍数计算AI训练系统,1.8倍计算AI推理系统,那么2025年1800亿美元的AI加速器销售将带动3510亿美元的AI系统销售。
这与Gartner预测的2025年数据中心系统总支出4055亿美元形成了有趣的对比。要么AMD的预测过于乐观,要么市场研究机构低估了AI投资的规模。
对于AMD的市场份额前景,假设采用相对保守的预测:2025年AMD可能获得61亿美元的收入,对应1800亿美元的市场机会。如果AMD能够在未来几年逐步提升市场份额——2026年达到7.5%,2027年达到10%,2028年达到15%——那么到2028年,AMD的数据中心GPU销售额可能接近900亿美元。
这将是AMD 2024年整个公司规模的近四倍。
好文章,需要你的鼓励
三星与AI搜索引擎Perplexity合作,将其应用引入智能电视。2025年三星电视用户可立即使用,2024和2023年款设备将通过系统更新获得支持。用户可通过打字或语音提问,Perplexity还为用户提供12个月免费Pro订阅。尽管面临版权争议,这一合作仍引发关注。
浙江大学团队提出动态专家搜索方法,让AI能根据不同问题灵活调整内部专家配置。该方法在数学、编程等任务上显著提升推理准确率,且不增加计算成本。研究发现不同类型问题偏爱不同专家配置,为AI推理优化开辟新路径。
苹果M5 MacBook Pro评测显示这是一次相对较小的升级。最大变化是M5芯片,CPU性能比M4提升约9%,多核性能比M4 MacBook Air快19%,GPU性能提升37%。功耗可能有所增加但电池续航保持24小时。评测者认为该产品不适合M4用户升级,但对使用older型号用户仍是强有力选择。
清华大学研究团队提出SIRI方法,通过"压缩-扩张"交替训练策略,成功解决了大型推理模型"话多且准确率低"的问题。实验显示,该方法在数学竞赛题上将模型准确率提升43.2%的同时,输出长度减少46.9%,真正实现了效率与性能的双重优化,为AI模型训练提供了新思路。