在给定两个端点和特定时间段内的复合年增长率时,预测中间各时间点的具体情况并不如表面看起来那么简单。这正是复合年增长率(CAGR)的局限性所在。
数学上,连接两个端点的曲线有无数种可能性,但在实际计算引擎、服务器或资金统计的物理世界中,两个端点之间数值的概率分布相对有限。例如,收入通常不会在五年内先增长10倍然后再回落。
过去几年,我们一直在与AMD首席执行官苏姿丰就数据中心AI计算引擎收入预测进行深入交流。她不断修正和完善AMD对未来几年的市场预期。与英伟达不公开此类预测不同,AMD至少告诉了我们它对2023年至2028年AI计算引擎市场的看法。
让我们回顾一下苏姿丰自2023年6月首次提及这一话题以来的市场预测变化。
在2023年6月的数据中心和AI技术发布会上,苏姿丰做出了首次预测:数据中心AI加速器市场将从2023年的300亿美元增长到2027年的超过1500亿美元,复合年增长率超过50%。这个预测涵盖了GPU、FPGA等加速器产品。
仅仅六个月后,随着生成式AI热潮的兴起,预测发生了显著变化。2023年底,苏姿丰将2023年的市场规模预测上调至450亿美元,2027年预测上调至超过4000亿美元,复合年增长率超过70%。
到2024年10月,预测再次调整:2023年AI加速器销售额确实达到450亿美元,但2028年的预测调整为超过5000亿美元,复合年增长率回调至60%以上。
在最近的Advancing AI活动中,苏姿丰提供了更详细的市场细分数据,将AI训练和AI推理市场分开预测。她特别强调,AI推理将成为未来的主要驱动力,预计年增长率超过80%,2026年推理加速器支出将超过训练加速器支出。
根据新数据,2028年AI加速器市场规模接近6000亿美元,2023年至2028年的复合年增长率为67.5%。
将这些数字放在更大的背景下考虑:如果按照2.1倍的系统倍数计算AI训练系统,1.8倍计算AI推理系统,那么2025年1800亿美元的AI加速器销售将带动3510亿美元的AI系统销售。
这与Gartner预测的2025年数据中心系统总支出4055亿美元形成了有趣的对比。要么AMD的预测过于乐观,要么市场研究机构低估了AI投资的规模。
对于AMD的市场份额前景,假设采用相对保守的预测:2025年AMD可能获得61亿美元的收入,对应1800亿美元的市场机会。如果AMD能够在未来几年逐步提升市场份额——2026年达到7.5%,2027年达到10%,2028年达到15%——那么到2028年,AMD的数据中心GPU销售额可能接近900亿美元。
这将是AMD 2024年整个公司规模的近四倍。
好文章,需要你的鼓励
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。