一项最新研究显示,美国软件开发者是全球最频繁使用AI编程助手的群体,研究人员认为这一趋势对国家经济具有重要影响。
四位研究人员——Simone Daniotti、Johannes Wachs、Xiangnan Feng和Frank Neffke在一篇预印本论文中分析了2018年至2024年间GitHub上的8000万次代码提交,探讨了美国程序员对AI助手的偏好。
研究团队开发了一个机器学习模型来分析GitHub提交记录,发现2024年美国开发者提交到GitHub的Python函数中,估计有30.1%是由AI生成的。
排名第二的是德国,占24.3%,随后是法国(23.2%)、印度(21.6%)、俄罗斯(15.4%)和中国(11.7%)。
论文指出,一旦开发者使用AI生成30%的代码,季度代码提交量会增长2.4%。
研究作者表示:"结合职业任务和薪酬数据分析,AI辅助编程在美国的年度价值达96亿至144亿美元。"
这一估算与微软CEO萨蒂亚·纳德拉的说法一致,他曾声称目前微软约30%的代码是由AI编写的。
研究人员认为,如果参考其他AI调查中更高的生产力提升数据,AI增强的代码提交率带来的潜在经济效益可能更高。例如去年9月的一份报告显示生产力提升了26%。
基于三项不同随机对照试验的任务完成时间估算,这些试验分别发现了16.5%、6.3%和26%的生产力提升,研究人员得出结论:30%的AI使用率将带来每年640亿至960亿美元的生产力提升价值。
作者承认他们的估算存在局限性。例如,他们专注于GitHub代码提交可能遗漏了中国流行的Gitee平台上的提交。同时他们也没有考虑"由于AI增加代码供应而可能导致的编程任务价值减少"。
还有其他因素可能影响结果的准确性,比如将Python作为其他编程语言软件开发影响的代表,以及假设GitHub开源项目中AI使用率在其他环境中也会重复出现。
但总体而言,作者对AI的生产力价值持乐观态度。此外,他们表示AI的采用促进了对新软件库和库组合的实验,从而扩展了开发者的知识面。当然,这是基于那些库确实存在而非AI虚构的前提下。
在编程之外,AI的经济影响可能更为有限。MIT研究院教授Daron Acemoglu在去年发表的论文《AI的简单宏观经济学》中预测,AI驱动的生产力增长仅约0.7%。
好文章,需要你的鼓励
谷歌深度思维团队开发出名为MolGen的AI系统,能够像经验丰富的化学家一样自主设计全新药物分子。该系统通过学习1000万种化合物数据,在阿尔茨海默病等疾病的药物设计中表现出色,实际合成测试成功率达90%,远超传统方法。这项技术有望将药物研发周期从10-15年缩短至5-8年,成本降低一半,为患者更快获得新药治疗带来希望。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
哈佛医学院和微软公司合作开发了一个能够"听声识病"的AI系统,仅通过分析语音就能预测健康状况,准确率高达92%。该系统基于深度学习技术,能够捕捉声音中与疾病相关的微妙变化,并具备跨语言诊断能力。研究团队已开发出智能手机应用原型,用户只需完成简单语音任务即可获得健康评估,为个性化健康管理开辟了新途径。