一项最新研究显示,美国软件开发者是全球最频繁使用AI编程助手的群体,研究人员认为这一趋势对国家经济具有重要影响。
四位研究人员——Simone Daniotti、Johannes Wachs、Xiangnan Feng和Frank Neffke在一篇预印本论文中分析了2018年至2024年间GitHub上的8000万次代码提交,探讨了美国程序员对AI助手的偏好。
研究团队开发了一个机器学习模型来分析GitHub提交记录,发现2024年美国开发者提交到GitHub的Python函数中,估计有30.1%是由AI生成的。
排名第二的是德国,占24.3%,随后是法国(23.2%)、印度(21.6%)、俄罗斯(15.4%)和中国(11.7%)。
论文指出,一旦开发者使用AI生成30%的代码,季度代码提交量会增长2.4%。
研究作者表示:"结合职业任务和薪酬数据分析,AI辅助编程在美国的年度价值达96亿至144亿美元。"
这一估算与微软CEO萨蒂亚·纳德拉的说法一致,他曾声称目前微软约30%的代码是由AI编写的。
研究人员认为,如果参考其他AI调查中更高的生产力提升数据,AI增强的代码提交率带来的潜在经济效益可能更高。例如去年9月的一份报告显示生产力提升了26%。
基于三项不同随机对照试验的任务完成时间估算,这些试验分别发现了16.5%、6.3%和26%的生产力提升,研究人员得出结论:30%的AI使用率将带来每年640亿至960亿美元的生产力提升价值。
作者承认他们的估算存在局限性。例如,他们专注于GitHub代码提交可能遗漏了中国流行的Gitee平台上的提交。同时他们也没有考虑"由于AI增加代码供应而可能导致的编程任务价值减少"。
还有其他因素可能影响结果的准确性,比如将Python作为其他编程语言软件开发影响的代表,以及假设GitHub开源项目中AI使用率在其他环境中也会重复出现。
但总体而言,作者对AI的生产力价值持乐观态度。此外,他们表示AI的采用促进了对新软件库和库组合的实验,从而扩展了开发者的知识面。当然,这是基于那些库确实存在而非AI虚构的前提下。
在编程之外,AI的经济影响可能更为有限。MIT研究院教授Daron Acemoglu在去年发表的论文《AI的简单宏观经济学》中预测,AI驱动的生产力增长仅约0.7%。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。