谷歌在周四宣布推出一款名为Doppl的实验性新应用,该应用利用人工智能技术帮助用户可视化不同服装在自己身上的穿着效果。这款应用目前已在美国的iOS和Android平台上线。
Doppl旨在让用户在数字化的自己身上虚拟试穿各种服装。该应用的工作原理是首先要求用户上传一张自己的全身照片。然后,用户可以使用不同服装的照片或截图进行虚拟试穿。这些图像可以是用户在二手店或朋友身上看到的服装照片,甚至可以是在社交媒体上浏览时看到的服装截图。
一旦用户选择想要可视化的服装,Doppl就会创建一个虚拟版本的用户穿着该服装的图像。Doppl还可以将这些静态图像转换为AI生成的视频,让用户更好地了解这套服装在现实生活中穿在自己身上的效果。
用户可以保存自己喜欢的造型,浏览所有其他虚拟试穿效果,还可以与他人分享自己的造型。
这家科技巨头表示,新应用建立在Google Shopping最近推出的虚拟试衣功能基础之上。通过在独立应用中推出这一功能,谷歌认为这样可以让该功能更容易访问,同时让人们以有趣和互动的方式探索自己的风格。这也可能帮助谷歌收集更多关于此类应用运作方式的数据,为其在该领域的未来努力提供支持。
虽然谷歌之前就提供过虚拟试衣技术,但早期功能主要专注于在不同模特身上展示商品。通过Doppl,该公司让用户可以在自己身体的动画版本上试穿衣服。
谷歌在博客文章中表示:"我们希望Doppl能帮助你以全新且令人兴奋的方式探索自己的风格。作为Google Labs的实验项目,Doppl还处于早期阶段,可能并不总能准确呈现效果。合身度、外观和服装细节可能并不总是准确的。"
鉴于Doppl是实验性发布,目前尚不清楚谷歌是否或何时计划将该应用推广到其他地区。
好文章,需要你的鼓励
美国网络安全和基础设施安全局指示联邦机构修补影响思科ASA 5500-X系列防火墙设备的两个零日漏洞CVE-2025-20362和CVE-2025-20333。这些漏洞可绕过VPN身份验证并获取root访问权限,已被黑客积极利用。攻击与国家支持的ArcaneDoor黑客活动有关,黑客通过漏洞安装bootkit恶意软件并操控只读存储器实现持久化。思科已发布补丁,CISA要求机构清点易受攻击系统并在今日前完成修补。
康考迪亚大学研究团队通过对比混合量子-经典神经网络与传统模型在三个基准数据集上的表现,发现量子增强模型在准确率、训练速度和资源效率方面均显著优于传统方法。研究显示混合模型的优势随数据集复杂度提升而增强,在CIFAR100上准确率提升9.44%,训练速度提升5-12倍,且参数更少。该成果为实用化量子增强人工智能铺平道路。
TimeWave是一款功能全面的计时器应用,超越了苹果自带时钟应用的功能。它支持创建流式计时器,让用户可以设置连续的任务计时,帮助专注工作。应用采用简洁的黑白设计,融入了Liquid Glass元素。内置冥想、番茄工作法、20-20-20护眼等多种计时模式,支持实时活动显示和Siri快捷指令。免费版提供基础功能,高级版需付费订阅。
沙特KAUST大学团队开发了专门针对阿拉伯语的AI模型家族"Hala",通过创新的"翻译再调优"技术路线,将高质量英语指令数据转化为450万规模的阿拉伯语语料库,训练出350M到9B参数的多个模型。在阿拉伯语专项测试中,Hala在同规模模型中表现最佳,证明了语言专门化策略的有效性,为阿拉伯语AI发展和其他语言的专门化模型提供了可复制的技术方案。