谷歌在周四宣布推出一款名为Doppl的实验性新应用,该应用利用人工智能技术帮助用户可视化不同服装在自己身上的穿着效果。这款应用目前已在美国的iOS和Android平台上线。
Doppl旨在让用户在数字化的自己身上虚拟试穿各种服装。该应用的工作原理是首先要求用户上传一张自己的全身照片。然后,用户可以使用不同服装的照片或截图进行虚拟试穿。这些图像可以是用户在二手店或朋友身上看到的服装照片,甚至可以是在社交媒体上浏览时看到的服装截图。
一旦用户选择想要可视化的服装,Doppl就会创建一个虚拟版本的用户穿着该服装的图像。Doppl还可以将这些静态图像转换为AI生成的视频,让用户更好地了解这套服装在现实生活中穿在自己身上的效果。
用户可以保存自己喜欢的造型,浏览所有其他虚拟试穿效果,还可以与他人分享自己的造型。
这家科技巨头表示,新应用建立在Google Shopping最近推出的虚拟试衣功能基础之上。通过在独立应用中推出这一功能,谷歌认为这样可以让该功能更容易访问,同时让人们以有趣和互动的方式探索自己的风格。这也可能帮助谷歌收集更多关于此类应用运作方式的数据,为其在该领域的未来努力提供支持。
虽然谷歌之前就提供过虚拟试衣技术,但早期功能主要专注于在不同模特身上展示商品。通过Doppl,该公司让用户可以在自己身体的动画版本上试穿衣服。
谷歌在博客文章中表示:"我们希望Doppl能帮助你以全新且令人兴奋的方式探索自己的风格。作为Google Labs的实验项目,Doppl还处于早期阶段,可能并不总能准确呈现效果。合身度、外观和服装细节可能并不总是准确的。"
鉴于Doppl是实验性发布,目前尚不清楚谷歌是否或何时计划将该应用推广到其他地区。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。