谷歌在周四宣布推出一款名为Doppl的实验性新应用,该应用利用人工智能技术帮助用户可视化不同服装在自己身上的穿着效果。这款应用目前已在美国的iOS和Android平台上线。
Doppl旨在让用户在数字化的自己身上虚拟试穿各种服装。该应用的工作原理是首先要求用户上传一张自己的全身照片。然后,用户可以使用不同服装的照片或截图进行虚拟试穿。这些图像可以是用户在二手店或朋友身上看到的服装照片,甚至可以是在社交媒体上浏览时看到的服装截图。
一旦用户选择想要可视化的服装,Doppl就会创建一个虚拟版本的用户穿着该服装的图像。Doppl还可以将这些静态图像转换为AI生成的视频,让用户更好地了解这套服装在现实生活中穿在自己身上的效果。
用户可以保存自己喜欢的造型,浏览所有其他虚拟试穿效果,还可以与他人分享自己的造型。
这家科技巨头表示,新应用建立在Google Shopping最近推出的虚拟试衣功能基础之上。通过在独立应用中推出这一功能,谷歌认为这样可以让该功能更容易访问,同时让人们以有趣和互动的方式探索自己的风格。这也可能帮助谷歌收集更多关于此类应用运作方式的数据,为其在该领域的未来努力提供支持。
虽然谷歌之前就提供过虚拟试衣技术,但早期功能主要专注于在不同模特身上展示商品。通过Doppl,该公司让用户可以在自己身体的动画版本上试穿衣服。
谷歌在博客文章中表示:"我们希望Doppl能帮助你以全新且令人兴奋的方式探索自己的风格。作为Google Labs的实验项目,Doppl还处于早期阶段,可能并不总能准确呈现效果。合身度、外观和服装细节可能并不总是准确的。"
鉴于Doppl是实验性发布,目前尚不清楚谷歌是否或何时计划将该应用推广到其他地区。
好文章,需要你的鼓励
机器人和自动化工具已成为云环境中最大的安全威胁,网络犯罪分子率先应用自动化决策来窃取凭证和执行恶意活动。自动化攻击显著缩短了攻击者驻留时间,从传统的数天减少到5分钟内即可完成数据泄露。随着大语言模型的发展,"黑客机器人"将变得更加先进。企业面临AI快速采用压力,但多数组织错误地关注模型本身而非基础设施安全。解决方案是将AI工作负载视为普通云工作负载,应用运行时安全最佳实践。
MBZUAI研究团队发布了史上最大的开源数学训练数据集MegaMath,包含3716亿个Token,是现有开源数学数据集的数十倍。该数据集通过创新的数据处理技术,从网页、代码库和AI合成等多个来源收集高质量数学内容。实验显示,使用MegaMath训练的AI模型在数学推理任务上性能显著提升,为AI数学能力发展提供了强大支撑。
面对心理健康专业人士短缺问题,谷歌、麦肯锡和加拿大重大挑战组织联合发布《心理健康与AI现场指南》,提出利用AI辅助任务分担模式。该指南构建了包含项目适应、人员选择、培训、分配、干预和完成六个阶段的任务分担模型,AI可在候选人筛选、培训定制、客户匹配、预约调度和治疗建议等环节发挥作用。该方法通过将部分治疗任务分配给经过培训的非专业人员,并运用AI进行管理支持,有望缓解治疗服务供需失衡问题。
这项由多个知名机构联合开展的研究揭示了AI系统的"隐形思维"——潜在推理。不同于传统的链式思维推理,潜在推理在AI内部连续空间中进行,不受语言表达限制,信息处理能力提升约2700倍。研究将其分为垂直递归和水平递归两类,前者通过重复处理增加思考深度,后者通过状态演化扩展记忆容量。