快手正在进行智能问答产品的内测,在搜索场景中为用户带来智能问答和文本创作等新功能。据悉,这是短视频直播行业首个基于大语言模型落地的应用产品。
据媒体7月8日消息,打开快手APP,进入快手搜索输入问题,就有机会获得来自智能问答产品提供的信息和答案。如用户搜索“西瓜怎么挑”、“PPI指数是什么意思”、“高中怎样才能高效学习”,快手搜索智能问答产品可以生成相关的文字回复,未来也会提供短视频结果展示,加深用户对答案的理解。该功能在原有搜索结果基础上提供了更加直接有效的信息补充,大幅提升用户搜索体验。
在传统的搜索场景中,用户需要对输入的关键词进行提炼和加工,以使得搜索引擎更好的理解自己的问题,并且在找的更多和找的更准之间进行权衡。对大多数用户来说,这个过程具备一定的操作成本。而基于大语言模型的快手搜索智能问答产品可以很好的理解用户通过自然语言表达的各种需求和提问,大大降低了用户获取信息的门槛,让用户“搜得容易”。
快手搜索智能问答产品利用大语言模型对于超长文本的理解和分析,可以帮助用户在海量内容中迅速锚定所需答案,更可以根据用户搜索需求直接定位到短视频内容的关键信息所在,提升获取效率。同时,针对大语言模型常见的AI幻觉问题,快手搜索利用站内海量内容进行矫正,尤其在事实性问题上,通过内容校验,可以更好地帮助用户完成高难度的内容辨别。
简言之,此次智能问答产品内测,也可看成是快手在推动AI技术普惠层面的有力探索。对比传统搜索场景,通过大语言模型技术能力在搜索场景的应用落地,智能问答产品不仅可以让用户“搜得容易”,还能“搜得满意”,切实享受到技术普惠带来的搜索的智能化体验。
据悉,快手还将基于搜索产品,不断探索更多利用大语言模型满足用户需求、提升搜索体验的可能性,在持续降低用户检索和使用门槛的同时,该能力未来还有望接入图文、直播及电商购物等多个场景,持续促进短视频+直播行业搜索智能化和技术应用普惠化。
好文章,需要你的鼓励
浙江大学和吉利汽车研究院联合团队提出的FreeTimeGS是一种创新的动态3D场景重建方法。不同于传统方法,它允许高斯基元在任意时空位置自由出现,并赋予每个基元运动功能,使其能够随时间移动到相邻区域。研究通过4D正则化策略解决了高不透明度基元阻碍优化的问题。在多个数据集测试中,该方法在渲染质量和速度上均大幅超越现有技术,特别是在处理复杂动态场景时,使用单个RTX 4090 GPU能以467 FPS的速度实现1080p实时渲染,为电影制作、游戏和虚拟现实等应用提供了新可能。
这篇研究介绍了"对角线批处理"技术,该技术解决了循环记忆Transformer模型在处理长文本时的并行计算瓶颈。通过重新编排计算顺序,研究团队实现了在不破坏依赖关系的情况下进行并行计算,使LLaMA-1B模型处理长文本的速度提升3.3倍,同时内存使用减少167.1倍。这种纯运行时优化不需要重新训练模型,为实际应用中的长文本处理提供了高效解决方案。
BEVCALIB是一种利用鸟瞰图表示实现激光雷达与相机校准的创新方法,由南加州大学和加州大学河滨分校的研究团队开发。该方法将不同传感器数据转换到共享的BEV空间,并通过几何引导的特征选择实现高精度校准。在KITTI和NuScenes等数据集上,BEVCALIB比现有最佳方法平均提高了47-82%的性能,为自动驾驶和机器人系统提供了可靠的传感器融合基础。
博尔扎诺自由大学研究团队开发的PATS技术通过保留完整运动片段代替随机抽取视频帧,显著提升了AI评估体育技能的能力。该方法在EgoExo4D基准测试中表现出色,攀岩评估准确率提高26.22%,音乐提高2.39%,篮球提高1.13%。PATS能根据不同运动类型自动调整采样策略,为体育训练和人才发展提供了更准确的自动评估技术。