Google 的 AI R&D 实验室 DeepMind 表示,他们开发了一种新的 AI 系统,用于处理具有 "machine-gradable"(可由机器评分)解决方案的问题。
DeepMind 表示,在实验中,该系统名为 AlphaEvolve,可帮助优化 Google 用于训练其 AI 模型的一些基础设施。公司表示,他们正在构建与 AlphaEvolve 交互的用户界面,并计划在可能更大范围推广之前,为部分学者推出早期访问计划。
大多数 AI 模型会产生幻觉。由于其概率架构,这些模型有时会自信地编造信息。实际上,新一代 AI 模型(如 OpenAI 的 o3)比其前辈产生更多幻觉,这也反映了该问题的复杂挑战。
AlphaEvolve 引入了一种巧妙的机制以减少幻觉现象:自动评估系统。该系统利用模型生成、评判并综合出一个问题的可能答案池,同时自动评估和打分以判断答案的准确性。
DeepMind 表示,AlphaEvolve 系统的设计目标是供领域专家使用。
AlphaEvolve 并不是第一个采用这种方法的系统。包括几年前 DeepMind 团队在内的研究人员,曾在数学各领域中应用过类似技术。但 DeepMind 声称,AlphaEvolve 所使用的 "state-of-the-art"(最先进)模型——特别是 Gemini 模型——使其相比以前的 AI 系统具有显著更强的能力。
要使用 AlphaEvolve,用户必须向系统输入一个问题,并可选地附上说明、方程、代码片段以及相关文献等详细信息。用户还需要提供一种以公式形式自动评估系统答案的机制。
由于 AlphaEvolve 只能解决其自身能进行评估的问题,该系统仅适用于某些类型的问题——特别是计算机科学和系统优化等领域的问题。另一项主要限制是,AlphaEvolve 只能以算法形式描述解决方案,这使得它对于非数值类问题的适用性较差。
为了对 AlphaEvolve 进行基准测试,DeepMind 让该系统尝试了一组精挑细选的约 50 道数学题,涵盖从几何到组合数学等多个分支。DeepMind 声称,AlphaEvolve 在 75% 的情况下能够“重新发现”这些问题的最佳解答,并在 20% 的案例中找到改进方案。
DeepMind 还将 AlphaEvolve 应用于实际问题,如提高 Google 数据中心的效率及加速模型训练。根据该实验室的数据,AlphaEvolve 生成的一种算法平均可持续回收 Google 全球计算资源的 0.7%。该系统还提出了一项优化措施,将 Google 训练 Gemini 模型的总体时间缩短了 1%。
需要明确的是,AlphaEvolve 并没有带来突破性的发现。在一次实验中,该系统成功找到了优化 Google TPU AI 加速器芯片设计的改进方案——这一问题此前已被其他工具指出。
然而,DeepMind 与许多 AI 实验室一样,主张 AlphaEvolve 能够节省时间,从而释放专家去关注其他更为重要的工作。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。