苹果公司计划利用AI标签技术改善App Store应用发现能力的功能现已在iOS 26开发者测试版中正式上线。
不过,这些标签目前尚未在公开版App Store中显示,也未被纳入公开商店的App Store搜索算法中。
当然,对于任何即将到来的App Store更新,外界都在猜测这些变化将如何影响应用的搜索排名。
例如,应用情报提供商Appfigures的一项新分析表明,从应用截图中提取的元数据正在影响其排名表现。该公司推测苹果正在从截图说明中提取文本信息。此前,只有应用名称、副标题和关键词列表才会影响搜索排名。
基于苹果在全球开发者大会(WWDC 25)上的公告,截图确实会影响应用的可发现性这一结论是准确的,但苹果提取数据的方式涉及AI技术,而非Appfigures猜测的OCR技术。
在年度开发者大会上,苹果解释称将使用截图和其他元数据来帮助提升应用的可发现性。公司表示正在使用AI技术提取原本隐藏在应用描述、类别信息、截图或其他元数据中的信息。这也意味着开发者无需在截图中添加关键词或采取其他步骤来影响标签生成。
这使得苹果能够分配标签来更好地对应用进行分类。最终,开发者将能够控制哪些AI分配的标签与其应用关联。
此外,苹果向开发者保证,人工审核员会在标签上线前进行审查。
随着时间推移,当标签功能面向全球App Store用户推出时,开发者需要更好地理解标签机制,以及哪些标签有助于提升应用的可发现性。
好文章,需要你的鼓励
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
医疗信息管理平台Predoc宣布获得3000万美元新融资,用于扩大运营规模并在肿瘤科、研究网络和虚拟医疗提供商中推广应用。该公司成立于2022年,利用人工智能技术提供端到端平台服务,自动化病历检索并整合为可操作的临床洞察。平台可实现病历检索速度提升75%,临床审查时间减少70%,旨在增强而非替代临床判断。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。