一项最新研究显示,美国软件开发者是全球最频繁使用AI编程助手的群体,研究人员认为这一趋势对国家经济具有重要影响。
四位研究人员——Simone Daniotti、Johannes Wachs、Xiangnan Feng和Frank Neffke在一篇预印本论文中分析了2018年至2024年间GitHub上的8000万次代码提交,探讨了美国程序员对AI助手的偏好。
研究团队开发了一个机器学习模型来分析GitHub提交记录,发现2024年美国开发者提交到GitHub的Python函数中,估计有30.1%是由AI生成的。
排名第二的是德国,占24.3%,随后是法国(23.2%)、印度(21.6%)、俄罗斯(15.4%)和中国(11.7%)。
论文指出,一旦开发者使用AI生成30%的代码,季度代码提交量会增长2.4%。
研究作者表示:"结合职业任务和薪酬数据分析,AI辅助编程在美国的年度价值达96亿至144亿美元。"
这一估算与微软CEO萨蒂亚·纳德拉的说法一致,他曾声称目前微软约30%的代码是由AI编写的。
研究人员认为,如果参考其他AI调查中更高的生产力提升数据,AI增强的代码提交率带来的潜在经济效益可能更高。例如去年9月的一份报告显示生产力提升了26%。
基于三项不同随机对照试验的任务完成时间估算,这些试验分别发现了16.5%、6.3%和26%的生产力提升,研究人员得出结论:30%的AI使用率将带来每年640亿至960亿美元的生产力提升价值。
作者承认他们的估算存在局限性。例如,他们专注于GitHub代码提交可能遗漏了中国流行的Gitee平台上的提交。同时他们也没有考虑"由于AI增加代码供应而可能导致的编程任务价值减少"。
还有其他因素可能影响结果的准确性,比如将Python作为其他编程语言软件开发影响的代表,以及假设GitHub开源项目中AI使用率在其他环境中也会重复出现。
但总体而言,作者对AI的生产力价值持乐观态度。此外,他们表示AI的采用促进了对新软件库和库组合的实验,从而扩展了开发者的知识面。当然,这是基于那些库确实存在而非AI虚构的前提下。
在编程之外,AI的经济影响可能更为有限。MIT研究院教授Daron Acemoglu在去年发表的论文《AI的简单宏观经济学》中预测,AI驱动的生产力增长仅约0.7%。
好文章,需要你的鼓励
新创公司Germ为Bluesky社交网络推出端到端加密消息服务,为用户提供比现有私信更安全的聊天选项。经过两年开发,该服务本周进入测试阶段,计划逐步扩大测试用户规模。Germ采用新兴技术如消息层安全协议和AT协议,无需手机号码即可实现安全通信。用户可通过"魔法链接"快速开始聊天,利用苹果App Clips技术无需下载完整应用。
这项研究由哈佛大学团队开发的创新框架,解决了多机构数据共享的核心难题。他们巧妙结合联邦学习、局部差分隐私和公平性约束,使不同机构能在保护数据隐私的同时协作开发更准确、更公平的决策模型。实验证明,该方法在多个真实数据集上既保障了隐私,又显著提升了模型公平性,为医疗、金融和政府等领域的数据协作提供了实用解决方案。
高通公司宣布正在与领先的超大规模云服务商进行深度合作谈判,开发专用于数据中心的CPU产品。CEO阿蒙表示,公司正在开发通用CPU和推理集群产品,预计2028财年开始产生收入。同时,高通面临三星在高端智能手机市场的竞争压力,三星计划在2026年推出采用2纳米工艺的新款Exynos处理器。高通Q3财报显示营收增长10%至103.5亿美元,净利润增长25%。
Meta AI研究团队开发的ALOHA系统是一种低成本开源的双臂机器人远程操作平台,旨在使机器人学习更加民主化和普及化。该系统结合了价格亲民的硬件设计和先进的行为克隆学习算法,使机器人能够从人类示范中学习复杂技能。研究表明,ALOHA系统展示了强大的泛化能力,能够在新环境中应用所学技能,如打开不同类型的瓶子。系统的开源性质鼓励全球研究者参与并推动机器人学习领域的发展,尽管仍面临成本和精确力控制等挑战。