麻省理工学院的科学家们发现,使用大语言模型会导致学习能力"可能下降"。
本周《时代》杂志报道了该研究团队的发现。在一篇预印本论文中,科学家们详细介绍了这项为期数月研究的新数据。
麻省理工学院团队邀请了54名来自波士顿地区的参与者在20分钟内写一篇短文。参与者被分为三组:第一组在没有任何外部帮助的情况下写作,第二组可以使用搜索引擎,第三组使用ChatGPT。
研究人员重复进行了四次实验。在第四次实验中,使用ChatGPT的参与者与独立写作的参与者互换角色。第四次测试在第一次测试四个月后进行。
研究人员在论文中写道:"虽然最初的好处很明显,但正如我们在4个月的过程中所证明的,大语言模型组的参与者在各个层面——神经、语言、评分——都比仅使用大脑组的参与者表现更差。"
麻省理工学院团队通过参与者佩戴的脑电图(EEG)头戴设备收集测试数据。这些设备使用电极测量佩戴者的大脑活动。研究人员还向参与者提出了一系列问题,以补充头戴设备收集的数据。
脑电图设备使用一种称为dDTF(动态定向传递函数)连接性的指标来测量佩戴者的认知负荷。该指标描述了不同大脑区域相互作用的强度。据研究人员称,使用大语言模型的参与者在写作时的dDTF连接性比没有使用ChatGPT的参与者低55%。
配备大语言模型的组在写作练习中也表现出较低的额中线θ活动。额中线θ脑电波与涉及集中注意力的认知活动相关。研究人员发现:"在仅使用大脑组中突出的θ连接在大语言模型组中相对较弱或缺失。"
在项目的后续阶段,麻省理工学院团队要求研究参与者引用他们文章中的内容。使用大语言模型的组在这项任务上的表现不如其他两组。此外,该组参与者报告对他们所写文章的"感知所有权"较低。
研究人员写道:"基于我们研究的结果,我们证明了学习能力可能下降这一紧迫问题。这些发现支持一种教育模式,即延迟AI集成,直到学习者进行了充分的自主认知努力。这种方法可能会促进即时工具效率和持久的认知自主性。"
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。