Alphabet公司旗下的Google DeepMind今日发布了AlphaGenome,这是一款能够全面预测人类DNA序列突变或变异如何影响基因调控的新型人工智能工具。
基因组是活细胞内完整的脱氧核糖核酸(DNA)集合,包含发育、生长和功能所需的全部遗传信息。在人类中,基因组由位于细胞核内的23对染色体组成,调控着包括环境反应和疾病易感性在内的一切生理过程。
新的AlphaGenome模型能够处理极长的DNA序列作为输入——最多可达100万个字母(也称为碱基对)——并预测数千种分子特性。这些字母就是我们熟知的A、T、C和G。
该模型能够预测的特性包括:不同细胞类型和组织中基因的起始和终止位置、剪接位点以及蛋白质产生数量。蛋白质是组织和酶的构建块,是机体发挥作用的必需物质。该模型还能判断基因之间的距离关系或是否与其他蛋白质结合。
DeepMind使用来自大型公共联盟的大量科学数据训练了这个模型,这些数据包含基因调控信息,涵盖ENCODE、GTEx、4D Nucleome等项目。
这个AI模型不仅能够"观察"大量DNA字母并预测基因行为,还能以单个字母的分辨率进行预测。长序列长度对于覆盖距离起始基因较远的调控基因区域至关重要。
DeepMind团队表示:"以往的模型必须在序列长度和分辨率之间进行权衡,这限制了它们能够联合建模和准确预测的模式范围。"
这一能力使得AI模型在预测"剪接"错误方面非常有用。这些错误可能导致罕见的遗传疾病,如脊髓性肌萎缩症和某些形式的囊性纤维化。
可以将DNA比作培训视频的脚本,而核糖核酸(RNA)则是原始素材。在最终剪辑前,细胞会"编辑"RNA,移除不必要的部分并将重要场景拼接在一起。但有时编辑会出错——关键场景被遗漏或包含了多余内容——导致最终产品存在缺陷。这些被称为剪接连接错误的失误可能会破坏身体的正常运作。
据DeepMind介绍,AlphaGenome在广泛的基因组预测基准测试中达到了最先进的性能水平,包括预测DNA分子哪些部分会相互接近、遗传变异是否会增加或降低基因表达,或是否会改变基因剪接模式。
纪念斯隆·凯特琳癌症中心研究员Caleb Lareau博士表示:"这是该领域的一个里程碑。我们首次拥有了一个统一长程上下文、碱基级精度和在整个基因组任务谱系中实现最先进性能的单一模型。"
DeepMind表示,预期AlphaGenome将成为疾病研究的强大工具,通过帮助准确预测遗传破坏来促进疾病理解。它还可用于指导具有特定调控功能的合成DNA设计,并通过协助理解基因组的关键功能元件来加速基因组研究的进展。
好文章,需要你的鼓励
科技专家Sungjoo Yoon在TED演讲中提出"偏好原理",认为了解用户喜好信息越多,就能创造更强大的技术。他将市场变化比作"地壳运动",从1969年命令行界面到80年代GUI,再到90年代网络界面,技术发展都遵循这一规律。自然语言处理能建立信任,而AI智能体时代的到来意味着非人类参与者将在人类主导的世界中发挥作用。
德国图宾根大学研究团队发现现代AI视觉模型具备强大的图像排序能力,能够理解年龄、美观程度等连续属性并进行准确排序。研究测试了7种AI模型在9个数据集上的表现,发现CLIP模型表现最佳,且仅需极少样本就能学会排序。这一突破为照片管理、电商展示、社交媒体等领域提供了新的技术方案。
微软推出了Copilot Vision AI新功能,该技术能够扫描和分析用户屏幕上的所有内容。这项AI视觉技术可以实时理解用户正在查看的信息,包括文本、图像和应用程序界面,为用户提供更加智能化的交互体验和个性化建议。此功能的推出标志着AI助手向更深层次的用户体验集成迈进。
KAUST团队开发UnMix-NeRF技术,首次实现3D场景重建与材料识别的同步。该系统利用光谱成像技术,能够识别物体的材料特性,不仅重建逼真3D场景,还可自动分离不同材料区域。技术在多个数据集上表现优异,为机器人、增强现实、工业检测等领域带来新突破。