DeepMind推出AlphaGenome预测DNA突变对基因的影响

谷歌DeepMind发布AlphaGenome人工智能工具,可全面预测人类DNA序列突变或变异对基因调节的影响。该模型能处理长达100万个碱基对的DNA序列,预测数千种分子特性,包括基因起止位置、剪接位置和蛋白质产量等。AlphaGenome在多项基因组预测基准测试中达到最先进性能,可预测剪接错误引起的罕见遗传疾病。研究人员认为这是该领域的里程碑,有望成为疾病研究的强大工具。

Alphabet公司旗下的Google DeepMind今日发布了AlphaGenome,这是一款能够全面预测人类DNA序列突变或变异如何影响基因调控的新型人工智能工具。

基因组是活细胞内完整的脱氧核糖核酸(DNA)集合,包含发育、生长和功能所需的全部遗传信息。在人类中,基因组由位于细胞核内的23对染色体组成,调控着包括环境反应和疾病易感性在内的一切生理过程。

新的AlphaGenome模型能够处理极长的DNA序列作为输入——最多可达100万个字母(也称为碱基对)——并预测数千种分子特性。这些字母就是我们熟知的A、T、C和G。

该模型能够预测的特性包括:不同细胞类型和组织中基因的起始和终止位置、剪接位点以及蛋白质产生数量。蛋白质是组织和酶的构建块,是机体发挥作用的必需物质。该模型还能判断基因之间的距离关系或是否与其他蛋白质结合。

DeepMind使用来自大型公共联盟的大量科学数据训练了这个模型,这些数据包含基因调控信息,涵盖ENCODE、GTEx、4D Nucleome等项目。

这个AI模型不仅能够"观察"大量DNA字母并预测基因行为,还能以单个字母的分辨率进行预测。长序列长度对于覆盖距离起始基因较远的调控基因区域至关重要。

DeepMind团队表示:"以往的模型必须在序列长度和分辨率之间进行权衡,这限制了它们能够联合建模和准确预测的模式范围。"

这一能力使得AI模型在预测"剪接"错误方面非常有用。这些错误可能导致罕见的遗传疾病,如脊髓性肌萎缩症和某些形式的囊性纤维化。

可以将DNA比作培训视频的脚本,而核糖核酸(RNA)则是原始素材。在最终剪辑前,细胞会"编辑"RNA,移除不必要的部分并将重要场景拼接在一起。但有时编辑会出错——关键场景被遗漏或包含了多余内容——导致最终产品存在缺陷。这些被称为剪接连接错误的失误可能会破坏身体的正常运作。

据DeepMind介绍,AlphaGenome在广泛的基因组预测基准测试中达到了最先进的性能水平,包括预测DNA分子哪些部分会相互接近、遗传变异是否会增加或降低基因表达,或是否会改变基因剪接模式。

纪念斯隆·凯特琳癌症中心研究员Caleb Lareau博士表示:"这是该领域的一个里程碑。我们首次拥有了一个统一长程上下文、碱基级精度和在整个基因组任务谱系中实现最先进性能的单一模型。"

DeepMind表示,预期AlphaGenome将成为疾病研究的强大工具,通过帮助准确预测遗传破坏来促进疾病理解。它还可用于指导具有特定调控功能的合成DNA设计,并通过协助理解基因组的关键功能元件来加速基因组研究的进展。

来源:SiliconANGLE

0赞

好文章,需要你的鼓励

2025

06/26

13:35

分享

点赞

邮件订阅