在生成式AI的淘金热潮中,人们很容易忘记,再先进的建模技术也无法弥补低质量数据的缺陷。当企业竞相部署人工智能时,往往忽视了一项看似平凡却至关重要的工作:保护、治理和准备数据基础。这种疏忽不仅是运营上的疏漏,更是战略层面的风险,特别是在AI数据保护方面。
theCUBE Research的Scott Hebner表示:"数据是AI的生命线。没有信息架构就没有AI。数据是任何AI系统的关键组成部分,因此数据必须具备最高质量。它必须在处理和使用过程中保持完整性,最重要的是,必须得到保护,既要符合监管要求,也要防范各种潜在威胁。因此,任何优秀的长期AI战略都必须从数据层开始,这包括数据保护。"
Hebner在数据保护与AI峰会上与theCUBE的Christophe Bertrand进行了对话,探讨了数据信任鸿沟、智能体AI带来的风险演变,以及保护在构建弹性智能AI基础设施中的基础作用。
大多数企业数据既未受到保护,也未为AI做好准备。根据Hebner的观察,由于风险担忧或缺乏治理,大部分企业数据实际上被搁置。如果没有强有力的AI数据保护,即使是先进的模型也只能在有限的可用信息上运行,这限制了质量和信任度。
"如果你观察组织拥有的绝大多数专有企业数据,实际上今天只有很少一部分被使用,在AI中使用的更少。当你深入研究这些AI项目时,你会发现这是因为他们不确定如何保护这些数据。这是一个风险评估问题。数据就在那里,但还没有准备好用于AI。我们估计企业约95%的数据根本没有准备好,而保护是其中的重要组成部分。"
有效的保护不仅使数据安全,还使其能够大规模地用于AI应用和重复使用。因此,AI数据保护必须被视为设计要求,而非部署后的补救措施。
Bertrand表示:"AI对你的工作流程很重要,对你的工作负载很重要,对你的业务也很重要。因此,AI基础设施的任何部分都必须受到保护。我认为这是基线要求。不要把它当作后续考虑的事情,它实际上是一个设计要求。"
随着AI智能体和自动化以前所未有的速度生成新数据,治理必须跟上步伐。AI数据保护在这一过程中发挥着关键作用,确保系统演进过程中的连续性、完整性和信任度。
Hebner认为:"AI将从这些数据中学习,开始理解什么是真正的高质量数据,什么是受保护的,什么不是。然后,它会从中学习并在下次做得更好。随着系统的不断构建,它在所做的事情上会变得越来越好。我确实认为构建一个支撑治理和信任管理的AI架构,包括保护、监管合规和企业政策在内的框架,有时你会想这是否已经成为基本要求。这只是你必须做的事情;否则,你如何跟上这一切?"
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。