今天早些时候,Microsoft Xbox 部门的负责人发布了 Muse,这是一个旨在为游戏创建视觉效果和玩法的生成式 AI 模型。
这个在忍者理论工作室 (Ninja Theory) 已被大众遗忘的多人游戏《Bleeding Edge》基础上训练的模型,对 Microsoft Xbox 部门来说并非意外之举。从 CEO Satya Nadella 开始,整个公司都全面拥抱生成式 AI 技术。Xbox 部门跟进这一趋势只是时间问题。
然而,根据最新的游戏行业状况报告中对 1500 名开发者的调查显示,30% 的开发者对生成式 AI 持负面态度。不论生成式 AI 是否会长期存在,游戏开发者们似乎越来越抵制用生成式 AI 取代创意构思过程。
但 Microsoft 并非孤军奋战。Capcom 最近也提到在游戏开发的构思阶段使用生成式 AI,认为可以通过自动化处理游戏开发中成千上万的小决策,从而减少繁琐工作,让开发者将精力集中在创意上。值得注意的是,像 Muse 这样的模型,虽然吸收了数百小时人工创作的游戏内容,但仍然需要人来提供创意基础。
这也引发了一个问题:Microsoft 现在是否应该在意开发者的想法?作为平台持有者和可能是业内最大的第三方发行商,在未来几年里,应对现代设计的复杂性并试图像 Capcom 一样使其更经济高效可能至关重要。举例来说,Xbox Game Studio 的最新《Fable》项目据称从 2018 年就开始开发,但至今仍未宣布发布日期。
生成式 AI 能否解决这个问题或加快进度?这还是未知数。但游戏开发周期越来越长,这种状况对 Xbox 负责人 Phil Spencer 来说并非长久之计。
对 Xbox 而言,"保护"是他们推广 Muse 的关键论点。Microsoft 游戏 AI 部门副总裁 Fatima Kardar 在初始声明中表示,Muse 可以让老游戏不受硬件进步的限制,轻松适配现代观众。按照 Kardar 的说法,这将使重制版和向下兼容工程的机会成本变得无关紧要。但 Xbox 今天展示的 Muse 相关内容并未证实这一点。
通过如此大规模地公开推广 Muse,Xbox 似乎试图同时服务于股东和未来主义者两方。这本无可厚非,但重要的是要记住,Muse 是通过训练剑桥工作室开发的、未能引起观众共鸣的游戏的数百小时内容而成。如果等式中的所有要素都不尽如人意,最终产品又怎能不是一种妥协?
好文章,需要你的鼓励
机器人和自动化工具已成为云环境中最大的安全威胁,网络犯罪分子率先应用自动化决策来窃取凭证和执行恶意活动。自动化攻击显著缩短了攻击者驻留时间,从传统的数天减少到5分钟内即可完成数据泄露。随着大语言模型的发展,"黑客机器人"将变得更加先进。企业面临AI快速采用压力,但多数组织错误地关注模型本身而非基础设施安全。解决方案是将AI工作负载视为普通云工作负载,应用运行时安全最佳实践。
MBZUAI研究团队发布了史上最大的开源数学训练数据集MegaMath,包含3716亿个Token,是现有开源数学数据集的数十倍。该数据集通过创新的数据处理技术,从网页、代码库和AI合成等多个来源收集高质量数学内容。实验显示,使用MegaMath训练的AI模型在数学推理任务上性能显著提升,为AI数学能力发展提供了强大支撑。
面对心理健康专业人士短缺问题,谷歌、麦肯锡和加拿大重大挑战组织联合发布《心理健康与AI现场指南》,提出利用AI辅助任务分担模式。该指南构建了包含项目适应、人员选择、培训、分配、干预和完成六个阶段的任务分担模型,AI可在候选人筛选、培训定制、客户匹配、预约调度和治疗建议等环节发挥作用。该方法通过将部分治疗任务分配给经过培训的非专业人员,并运用AI进行管理支持,有望缓解治疗服务供需失衡问题。
这项由多个知名机构联合开展的研究揭示了AI系统的"隐形思维"——潜在推理。不同于传统的链式思维推理,潜在推理在AI内部连续空间中进行,不受语言表达限制,信息处理能力提升约2700倍。研究将其分为垂直递归和水平递归两类,前者通过重复处理增加思考深度,后者通过状态演化扩展记忆容量。