在周三的 Cloud Next 大会上,Google 宣布其第七代 Tensor Processing Units (TPU) 即将向云端客户开放租用,可选择 256 芯片或 9,216 芯片的集群方案。
Google 打趣地表示,配备 9,216 个自研 AI 加速器的集群可以提供 42.5 exaFLOPS 的算力,是目前全球最强公开超级计算机——美国的 El Capitan (1.7 exaFLOPS) 的 24 倍算力。
这个数据听起来令人印象深刻,但 Google 的营销团队略过了一个重要细节。42.5 exaFLOPS 的峰值性能是基于 FP8 精度计算的,而 El Cap 在 HPC 专用的 LINPACK 基准测试中实现的 1.74 exaFLOPS 是基于 FP64 精度。实际上,El Cap 的理论峰值性能接近 2.74 FP64 exaFLOPS。
如果换算成 FP8 精度,这台由 AMD 驱动的 HPE-Cray 超级计算机在密集工作负载下的理论峰值性能约为 87 exaFLOPS,而在稀疏工作负载下可达到其两倍。Google 营销将 42.5 exaFLOPS 的 FP8 与 1.74 exaFLOPS 的 FP64 进行对比是不恰当的,实际应该是 42.5 对比至少 87,这意味着 El Capitan 的性能明显优于 9,216 个 TPU v7 芯片组成的集群。所谓 24 倍的说法在我们看来并不准确。
当我们就此询问 Google 时,一位发言人表示,云计算巨头只是在对比他们当时能找到的 El Capitan 最好的数据。这让我们不禁联想到 Gemini AI 的风格。
"我们没有 El Capitan 在 FP8 精度下的持续性能数据,"发言人告诉我们。
"我们做出这个对比的假设是基于 El Capitan 在 AI 工作负载方面展示了他们的最佳算力数据,因为他们也同样关注 AI。
虽然 El Capitan 可能支持 FP8,但在没有额外的持续性能数据的情况下,我们无法进行对比。我们不能简单地假设降低精度就能线性提升峰值性能。此外需要注意的是,Ironwood 可以通过我们的高速 Jupiter 数据中心网络扩展到超过单个集群,最多支持 400,000 个芯片或 43 个 TPU v7x 集群。"
撇开这些对比不谈,Google 最新的代号为 Ironwood 的 TPU 相比去年的 Trillium 有了重大升级。
每个 TPU 都配备了高达 192GB 的高带宽内存 (HBM),带宽在 7.2-7.4TB/s 之间(发布公告中文字部分和图片分别引用了这两个数字)。该芯片主要面向大语言模型 (LLM) 推理设计。
如我们之前讨论过的,内存带宽是推理工作负载的主要瓶颈。更大的内存容量意味着芯片可以容纳更大的模型。在原始浮点性能方面,Google 表示每个液冷 TPU v7 能够达到 4.6 petaFLOPS 的密集 FP8 运算能力。这使其性能与 Nvidia 的 Blackwell B200 处于同一水平。
除了其标志性的张量处理引擎外,Ironwood 还配备了 Google 的 SparseCore,专门用于加速排名和推荐系统中常见的"超大规模嵌入"。
这些芯片的更多细节可以在 The Next Platform 上找到,预计将于今年晚些时候全面上市。
为了构建这些集群,每个 TPU 都配备了专门的芯片间互联 (ICI),Google 表示其双向每链路带宽可达 1.2 terabits/s,比 Trillium 提升了 1.5 倍。
据 Google 表示,9,216 芯片的大型集群在满负载运行时将消耗约 10 兆瓦的功率。Google 没有透露每个芯片的 TDP,但这表明其功耗可能在 700W 到 1kW 之间,与同级别的 GPU 相当。虽然这听起来功耗很大,但 Google 强调这些芯片的效率仍比 2015 年第一代 TPU 提高了 30 倍,性能每瓦比去年的芯片提高了 2 倍。
好文章,需要你的鼓励
这篇研究论文介绍了"Speechless",一种创新方法,可以在不使用实际语音数据的情况下训练语音指令模型,特别适用于越南语等低资源语言。研究团队通过将文本指令转换为语义表示,绕过了对高质量文本转语音(TTS)系统的依赖。该方法分三个阶段:首先训练量化器将语音转为语义标记;然后训练Speechless模型将文本转为这些标记;最后用生成的合成数据微调大型语言模型。实验表明,该方法在越南语ASR任务中表现出色,为低资源语言的语音助手开发提供了经济高效的解决方案。
《Transformer Copilot》论文提出了一种革命性的大语言模型微调框架,通过系统记录和利用模型训练过程中的"错误日志"来提升推理性能。研究团队受人类学习者记录和反思错误的启发,设计了一个"副驾驶"模型来辅助原始"驾驶员"模型,通过学习错误模式并在推理时校正输出。这一方法在12个基准测试上使模型性能提升高达34.5%,同时保持计算开销最小,展现了强大的可扩展性和可迁移性,为大语言模型的优化提供了全新思路。
德克萨斯大学Austin分校的研究团队提出了RIPT-VLA,一种创新的视觉-语言-动作模型后训练范式。该方法通过让AI模型与环境互动并仅接收简单的成功/失败反馈来学习,无需复杂的奖励函数或价值模型。实验证明,RIPT-VLA能显著提升现有模型性能,在轻量级QueST模型上平均提升21.2%,将大型OpenVLA-OFT模型推至97.5%的前所未有成功率。最令人惊叹的是,仅用一个示范样本,它就能将几乎不可用的模型在15次迭代内从4%提升至97%的成功率,展现出卓越的数据效率和适应能力。
北京大学与华为诺亚方舟实验室研究团队共同开发了TIME基准,这是首个专为评估大语言模型在真实世界场景中的时间推理能力而设计的多层级基准。该研究提出了三个层级的时间推理框架,包含11个细粒度任务,并构建了涵盖38,522个问答对的数据集,针对知识密集型信息、快速变化的事件动态和社交互动中的复杂时间依赖性三大现实挑战。实验结果表明,即使是先进模型在构建时间线和理解复杂时间关系方面仍面临显著挑战,而测试时扩展技术可明显提升时间逻辑推理能力。