上个月,Google 发布 Gemini 2.5 引起轰动,此前在与 OpenAI 等公司的竞争中处于追赶地位的 Google,一跃成为 AI 领域的领跑者。这个首个实验性模型仅仅是个开始。Google 正在其生态系统的更多场景中部署改进后的 AI,从面向开发者的 Vertex AI 到面向消费者的 Gemini 应用都包括在内。
Gemini 模型推出速度如此之快,以至于很难把握 Google 的产品线规划。随着公司开始将其产品迁移到新分支,情况变得更加明朗。在 Google Cloud Next 大会上,公司宣布了 Gemini 2.5 Flash 的初步可用性。这个模型基于与 Gemini 2.5 Pro 相同的代码,但运行速度更快、成本更低。
目前在 Gemini 应用中还看不到 Gemini 2.5 Flash —— 它首先在 Vertex AI 开发平台上启用。Pro 版本的实验性广泛发布帮助 Google 收集数据并了解人们如何与新模型交互,这些经验有助于 2.5 Flash 的开发。
Flash 版本比 Pro 版本的参数量更小,尽管 Google 不愿透露具体的参数数量。Flash 模型能为简单的提示提供更快的答案,这也降低了成本。我们知道 2.5 Pro (实验版) 是首个实现动态思考的 Gemini 模型,这种技术允许模型调节回答时的模拟推理量。2.5 Flash 也是一个具备思考能力的模型,而且更加先进。
我们最近与 Google 的 Tulsee Doshi 交谈时了解到,2.5 Pro (实验版) 在响应简单查询时仍然容易"过度思考"。但计划是在最终发布版本中进一步改进动态思考,团队也希望给开发者更多控制该特性的能力。这些改进似乎在 Gemini 2.5 Flash 中得到了实现,它包含了"动态且可控的推理"。
最新的 Gemini 模型将根据提示的复杂程度选择"思考预算"。这有助于减少 2.5 Flash 的等待时间和处理时间。开发者甚至可以精细控制预算,在适当的情况下降低成本并加快速度。Gemini 2.5 模型在未来几周还将为 Vertex AI 增加监督调优和上下文缓存功能。
除了 Gemini 2.5 Flash 的推出,更大的 Pro 模型也有了新的用途。Google 最大的 Gemini 模型现在为其 Deep Research 工具提供支持,该工具此前运行的是 Gemini 2.0 Pro。Deep Research 让你只需输入一个提示就能深入探索某个主题。该工具会在互联网上收集数据并综合生成详细报告。
升级到 Gemini 2.5 后,Google 表示 Deep Research 的准确性和实用性都得到了提升。上图显示了 Google 声称相比 OpenAI 的深度研究工具具有的优势。这些统计数据基于用户评估(而非综合基准测试),显示用户对 Gemini 2.5 Pro 报告的偏好超过 2:1。
Deep Research 在非付费账户上可以有限使用,但无法使用最新模型。搭载 2.5 Pro 的 Deep Research 目前仅限 Gemini Advanced 订阅用户使用。不过,我们预计不久后 Gemini 应用中的所有模型都将升级到 2.5 分支。借助动态推理和新的 TPU,Google 可能开始降低目前让生成式 AI 无法盈利的高昂成本。
好文章,需要你的鼓励
TechCrunch Disrupt 2025 AI舞台将汇聚塑造科技未来的领军人物,顶尖风投将揭示在快速变化的AI领域获得融资的关键。来自Apptronik、ElevenLabs、Hugging Face、Runway等创新企业的领导者将分享前沿洞见,探讨AI如何重塑创意过程、改变物理世界、变革国防安全和重新定义人际关系。10月27-29日,五大主题舞台将在旧金山呈现科技创新的未来图景。
西班牙研究团队提出了一种创新的AI自我纠错方法SSC,让人工智能学会识别和修正规则中的漏洞。当AI发现自己在钻空子获得高分时,它会反思规则的合理性并主动改进。实验显示这种方法将AI的"钻空子"行为从50-70%降低到3%以下,同时提升了回答质量。这项技术有望让AI从被动执行指令转变为能够质疑和改进指令的智能协作伙伴。
英超联赛与微软达成五年战略合作伙伴关系,推出AI驱动的Premier League Companion服务,为全球球迷提供个性化体验。该服务利用Azure OpenAI技术,整合30多个赛季的统计数据、30万篇文章和9000个视频,帮助球迷发现和了解更多内容。未来还将为Fantasy Premier League引入个人助理经理功能,并通过Azure AI优化比赛直播体验和赛后分析。
这篇文章详细解析了Long、Shelhamer和Darrell在2015年CVPR会议上发表的开创性研究"全卷积网络用于语义分割"。文章以通俗易懂的方式,将这项复杂的技术比作艺术家的绘画过程,解释了如何让计算机不仅识别图像中有什么物体,还能精确标出每个物体的位置和边界。研究团队通过将传统分类网络改造为全卷积形式,并巧妙运用上采样和跳跃连接技术,实现了高效准确的像素级图像理解。这一突破为自动驾驶、医学影像和增强现实等领域带来了革命性变化,奠定了现代计算机视觉的重要基础。