金融科技巨头 Stripe 周三在其年度 Stripe Sessions 用户活动上公布了一系列新产品发布。其中亮点包括:支付领域全新 AI 基础模型;由稳定币驱动的账户;全新的 Orchestration 解决方案,以及与芯片巨头 Nvidia 近期达成的迁移合作。
Stripe 的支付基础模型经过数百亿笔交易的数据训练,Stripe 信息主管 Emily Glassberg Sands 介绍说,因此它“捕捉到了每笔支付中数百个细微的信号”,这些信号是其他模型容易忽略的。
其中一个应用场景是改进欺诈检测。Stripe 之前的模型通过“逐步”减少信用卡测试攻击,在两年内将该类攻击降低了 80%。信用卡测试攻击是一种欺诈行为,攻击者尝试检测被盗信用卡信息是否有效,以便利用这些信息进行购物。
该公司宣称,其全新基础模型几乎在一夜之间就将大企业遭受此类攻击的检测率提高了 64%。
她补充道:“过去,我们无法充分利用海量数据。现在,我们可以。”
当然,Stripe 并不是唯一一家利用 AI 构建欺诈检测模型的金融科技公司。仅举一例,Sardine 将自身描述为专注于欺诈、合规及信用承保的 AI 风险平台,今年二月就由 Activant Capital 领投完成了 7000 万美元的 C 轮融资。
在接受 TechCrunch 采访时,Stripe 产品与业务总裁 Will Gaybrick 表示,Stripe 的通用模型采用自监督学习,因此能够自主发掘特征。
他说:“我们在机器学习中一再发现,通用模型的表现更胜一筹。其主要原因在于敏捷性。它在性能上更优,且能更好地适应欺诈模式的变化。”
此外,Stripe 周三还宣布计划通过与 Ramp、Squads 以及 Airtm 等初创企业合作,为各国企业引入由稳定币支持的多币种卡。借助这些卡片,各国企业将能够“首次在同一货币体系下运营”,据各公司称。
这一举措距离 Stripe 完成对稳定币平台 Bridge 的收购仅三个月。
借助 Orchestration 解决方案,Stripe 表示能更好地帮助企业通过仪表板设置、管理并优化多个支付提供商间的表现,无论企业是否使用 Stripe 作为支付处理器。
在此次活动中,Stripe 还提及了多家使用其结算产品的 AI 公司,包括 Windsurf、OpenAI、Anthropic、Cursor、Perplexity 以及 Eleven Labs。
近期,根据 Stripe 收入自动化主管 Vivek Sharma 的介绍,Nvidia 在六周内将其“全部订阅用户群”成功迁移至 Stripe Billing——而金融科技公司称通常此类迁移需要数月完成,这一过程创下了“Stripe Billing 迁移最快纪录”。(Nvidia 早前已是 Stripe Payments 的客户。)
Stripe 周三的其他公告还包括:
支持 25 种新支付方式,包括 UPI 与 PIX,使其总支付方式超过 125 种。
Klarna 将在今年夏天登录 Stripe 的消费者支付产品 Link。
Stripe Terminal 现已支持使用第三方硬件,首发伙伴为 Verifone。
Managed Payments —— 一项全新的商家记录服务,为企业进入新市场提供所需的一切,包括代为处理全球税务、欺诈防范、争议管理、履约等。
Smart Disputes 利用 AI 自动化处理争议管理。
Stripe Tax 服务现已覆盖 102 个国家,较去年的 57 个实现大幅增长,并实现了从监控、注册到收税、申报的全税务生命周期自动化。
Global Payouts 允许企业只需使用电子邮件地址即可向客户、外包人员及其他第三方完成支付。
好文章,需要你的鼓励
在他看来,企业对AI的恐惧源自未知,而破解未知的钥匙,就藏在“AI平台+开源”这个看似简单的公式里。
斯坦福和魁北克研究团队首创"超新星事件数据集",通过让AI分析历史事件和科学发现来测试其"性格"。研究发现不同AI模型确实表现出独特而稳定的思维偏好:有些注重成就结果,有些关注情感关系,有些偏向综合分析。这项突破性研究为AI评估开辟了新方向,对改善人机协作和AI工具选择具有重要意义。
Pure Storage发布企业数据云(EDC),整合其现有产品组合,提供增强的数据存储可见性和基于策略的简化管理。EDC集成了Purity存储操作系统、Fusion资源管理、Pure1舰队管理和Evergreen消费模式等架构元素,提供类云存储管理环境。该方案支持声明式策略驱动管理,让客户专注业务成果而非基础设施管理。同时发布高性能闪存阵列和300TB直接闪存模块,并与Rubrik合作提供网络安全防护能力。
威斯康星大学研究团队提出"生成-筛选-排序"策略,通过结合快速筛选器和智能奖励模型,在AI代码验证中实现了11.65倍速度提升,准确率仅下降8.33%。该方法先用弱验证器移除明显错误代码,再用神经网络模型精确排序,有效解决了传统方法在速度与准确性之间的两难选择,为实用化AI编程助手铺平了道路。