麻省理工学院的科学家们发现,使用大语言模型会导致学习能力"可能下降"。
本周《时代》杂志报道了该研究团队的发现。在一篇预印本论文中,科学家们详细介绍了这项为期数月研究的新数据。
麻省理工学院团队邀请了54名来自波士顿地区的参与者在20分钟内写一篇短文。参与者被分为三组:第一组在没有任何外部帮助的情况下写作,第二组可以使用搜索引擎,第三组使用ChatGPT。
研究人员重复进行了四次实验。在第四次实验中,使用ChatGPT的参与者与独立写作的参与者互换角色。第四次测试在第一次测试四个月后进行。
研究人员在论文中写道:"虽然最初的好处很明显,但正如我们在4个月的过程中所证明的,大语言模型组的参与者在各个层面——神经、语言、评分——都比仅使用大脑组的参与者表现更差。"
麻省理工学院团队通过参与者佩戴的脑电图(EEG)头戴设备收集测试数据。这些设备使用电极测量佩戴者的大脑活动。研究人员还向参与者提出了一系列问题,以补充头戴设备收集的数据。
脑电图设备使用一种称为dDTF(动态定向传递函数)连接性的指标来测量佩戴者的认知负荷。该指标描述了不同大脑区域相互作用的强度。据研究人员称,使用大语言模型的参与者在写作时的dDTF连接性比没有使用ChatGPT的参与者低55%。
配备大语言模型的组在写作练习中也表现出较低的额中线θ活动。额中线θ脑电波与涉及集中注意力的认知活动相关。研究人员发现:"在仅使用大脑组中突出的θ连接在大语言模型组中相对较弱或缺失。"
在项目的后续阶段,麻省理工学院团队要求研究参与者引用他们文章中的内容。使用大语言模型的组在这项任务上的表现不如其他两组。此外,该组参与者报告对他们所写文章的"感知所有权"较低。
研究人员写道:"基于我们研究的结果,我们证明了学习能力可能下降这一紧迫问题。这些发现支持一种教育模式,即延迟AI集成,直到学习者进行了充分的自主认知努力。这种方法可能会促进即时工具效率和持久的认知自主性。"
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。