NetApp 在其 AIPod 系列 ONTAP AI 系统中新增了一款成本更低的 AIPod Mini,为部门级和团队级生成式 AI 工作负载项目提供计算与存储基础。
AIPod 系列最初以与 Nvidia 合作的 AIPod 作为起点,该系统是一款已认证的 Nvidia BasePOD 系统,采用该 GPU 制造商的 DGX H100 GPU 服务器,并连接至 NetApp 的 AFF C-Series 高容量闪存系统。随后,该系列支持了更快的 A-Series 闪存阵列,并推出了 Lenovo AIPod 版本,该版本配备 Nvidia OVX,专为 GenAI 微调、推理、检索增强生成 (RAG) 以及部署定制化聊天机器人、辅助驾驶员和其他 GenAI 应用而打造。去年九月,ONTAP 实现了与 AI 数据流水线的直接集成,自动生成矢量嵌入;而在今年三月,NetApp 的 AIPod 获得了 Nvidia 认证存储称号,以支持 Nvidia 企业参考架构所需的高性能存储。如今,我们迎来了面向部门级 GenAI 推理工作负载、以 Intel 为导向的 AIPod Mini。
NetApp 首席商务官 Dallas Olson 表示: “我们的使命是为各层级的每个团队解锁 AI,而不受传统复杂性或成本的障碍限制。搭载 Intel 技术的 NetApp AIPod Mini 为客户提供了一个解决方案,不仅改变了团队使用 AI 的方式,同时也使定制、部署和维护变得更加简单。我们正在将专有企业数据转化为强大的商业成果。”
该公司指出,AIPod Mini “使企业能够通过预封装的检索增强生成 (RAG) 工作流直接与其业务数据进行交互,该工作流将生成式 AI 与专有信息相结合,从而简化 AI 在特定应用中的部署和使用,例如: o 为法律团队自动化部分文档起草与研究工作, o 为零售团队实现个性化购物体验和动态定价, o 为制造单位优化预测性维护和供应链。”
据我们了解,AIPod Mini 旨在比完整规模的 Nvidia GPU 环境更易使用且成本更低。它专为部门或业务单元预算设计,并具有低门槛的可扩展性。将会提供一个预先验证的参考设计,结合其 RAG 工作流,可“实现快速设置、无缝集成与定制,无需额外负担。”
Intel 美洲区域企业副总裁兼总经理 Greg Ernst 表示: “通过将 Intel Xeon 处理器与 NetApp 强大的数据管理及存储能力相结合,NetApp AIPod Mini 解决方案为业务单元在应对其独特挑战时提供了部署 AI 的契机。该方案使用户能够利用 AI,而无需承担庞大基础设施或多余技术复杂性的负担。”
AIPod Mini 集成了 Intel 处理器与 NetApp 的全闪存 ONTAP 存储系统,并基于企业级 AI 开放平台 (OPEA) 框架构建。
该 CPU 为 Intel Xeon 6 ,采用 2 核架构,利用 Performance 或 P 核 (Granite Rapids) ,其中包括 Advanced Matrix Extensions (AMX) ,以及 Efficient 或 E 核 (Sierra Forest) 。其中,P 核支持生成式 AI 大语言模型 (LLM) 的工作负载。
OPEA 是在去年四月设立的,作为 Intel 在 LF AI & Data Foundation(LF 代表 Linux Foundation)下的开源沙盒项目,旨在创建一个标准化、多供应商且可组合的 AI 应用开发与部署框架,支持 RAG,并具备模块化微服务和架构蓝图。从某种程度上讲,它与 Nvidia 的生成式 AI 生态系统形成竞争关系,其参考实现均针对 Intel 硬件进行了优化。在 OPEA 中,除 NetApp 与 Nutanix 外没有其他存储阵列系统供应商。除非其他供应商加入该组织,否则我们不会看到 NetApp 竞争对手推出 OPEA 风格的 AIPod Mini 系统。
搭载 Intel 的 NetApp AIPod Mini 将于 2025 年夏季通过部分 NetApp 全球渠道合作伙伴上市。初期发布合作伙伴将包括两家分销商 – Arrow Electronics 和 TD SYNNEX – 以及五家集成合作伙伴:Insight Partners、CDW USA、CDW UK&I、Presidio,以及 Long View Systems,后者将提供专门支持与服务。
目前我们尚未获得具体的配置细节。点击此处了解更多信息。
好文章,需要你的鼓励
这项研究探索了语言神经元视角下多语言对齐如何增强大语言模型(LLMs)的多语言能力。研究团队提出了一种更精细的神经元识别算法,将激活神经元分为语言特定、语言相关和语言无关三类,克服了现有方法的局限性。基于这种分类,研究将LLMs多语言处理过程划分为四个阶段:多语言理解、共享语义空间推理、多语言输出空间转换和词汇空间输出。通过分析对齐前后不同类型神经元的变化,发现多语言对齐促进了更多语言相关神经元的共享使用,减少了对语言特定神经元的依赖,这也解释了"自发多语言对齐"现象。
这项由弗吉尼亚大学与Adobe研究院合作的研究突破了传统图像到视频生成的空间限制,提出了"Frame In-N-Out"技术,使物体可以自然地离开画面或新物体能够进入画面。研究团队创建了专门的数据集和评估方法,并设计了一种融合运动控制、身份参考和无边界画布的扩散变换器架构。实验结果表明,该方法在生成质量和控制精度上显著优于现有技术,为电影制作和创意内容创作提供了新可能。
浙江大学研究团队开发了首个评估视觉语言模型多视角空间定位能力的综合基准ViewSpatial-Bench,并揭示了现有模型在视角转换理解上的严重缺陷。通过自动化3D标注流水线构建的大规模数据集,他们训练出的多视角空间模型(MVSM)实现了46.24%的性能提升,为人机空间交互提供了新的解决方案,使AI系统能更好地理解人类视角下的空间关系,促进更直观的人机交流。
ByteDance团队提出的DetailFlow是一种创新的图像生成方法,通过"下一细节预测"策略实现从粗到细的自回归生成。它将图像编码为仅需128个令牌的1D序列,比传统方法少5倍,却实现了更高质量(2.96 gFID)和更快速度(提速约8倍)。该方法巧妙地模拟人类创作过程:先勾勒整体结构,再逐步添加细节,并通过自我纠错机制解决并行推理中的错误累积问题,为高分辨率图像生成提供了高效解决方案。