随着大规模AI部署需求激增,芯片创业公司Positron正将自己定位为市场领导者英伟达的直接挑战者,通过提供专用的节能内存优化推理芯片,旨在缓解行业日益严重的成本、功耗和可用性瓶颈。
Positron联合创始人兼首席技术官Thomas Sohmers在接受VentureBeat视频采访时表示:"我们的关键差异化优势是能够以更高效率运行前沿AI模型——与英伟达相比,每瓦特和每美元可实现2倍到5倍的性能提升。"
Positron首席执行官、前AI云推理提供商Lambda首席运营官Mitesh Agrawal指出:"我们制造的芯片可以部署在数百个现有数据中心,因为它们不需要液体冷却或极端功率密度。"
风险投资家和早期用户似乎对此表示认同。Positron昨日宣布完成超募的5160万美元A轮融资,由Valor Equity Partners、Atreides Management和DFJ Growth领投。
在早期客户群体中,包括知名企业和推理密集型行业的公司。已确认的部署包括主要安全和云内容网络提供商Cloudflare,该公司在其全球分布式、功耗受限的数据中心使用Positron的Atlas硬件。
进入充满挑战的市场
然而,Positron也正进入一个充满挑战的市场。据报道,竞争对手AI推理芯片创业公司Groq已将其2025年收入预测从20亿美元以上下调至5亿美元,凸显了AI硬件领域的波动性。
面对更高效、更小的大语言模型和专用小语言模型的兴起,Positron的领导层选择拥抱这一趋势。Agrawal表示:"一直存在这种双重性——本地设备上的轻量级应用和集中式基础设施中的重量级处理。我们相信两者都会持续增长。"
Atlas:推理优先的AI芯片
虽然英伟达GPU通过加速模型训练帮助催生了深度学习热潮,但Positron认为推理——模型在生产中生成输出的阶段——现在是真正的瓶颈。
Positron的解决方案是Atlas,这是专门为处理大型Transformer模型而构建的第一代推理加速器。与通用GPU不同,Atlas针对现代推理任务的独特内存和吞吐量需求进行了优化。
该公司声称,Atlas的每美元性能比英伟达H100高出3.5倍,功耗降低66%,同时实现93%的内存带宽利用率。
从Atlas到Titan
仅在成立15个月后,Atlas就已开始出货和投产。该系统支持在单个2kW服务器中运行多达5000亿参数的模型。
Positron正准备在2026年推出下一代平台Titan。基于定制设计的"Asimov"硅芯片,Titan将提供每个加速器高达2TB的高速内存,支持多达16万亿参数的模型。
关键是,Titan设计为在传统数据中心环境中使用标准风冷运行,避免了下一代GPU日益需要的高密度液冷配置。
工程效率与兼容性
从一开始,Positron就将其系统设计为即插即用替代方案,允许客户使用现有模型二进制文件而无需重写代码。Sohmers解释说,Positron专注于推理,设计能够直接处理英伟达训练模型的硬件。
内存是关键需求
Sohmers和Agrawal指出AI工作负载的根本转变:从计算密集型卷积神经网络转向内存密集型Transformer架构。虽然英伟达和其他公司继续专注于计算扩展,但Positron押注于内存优先设计。
美国制造的芯片
Positron的生产管道完全在美国本土。公司第一代芯片使用英特尔设施在美国制造,最终服务器组装和集成也在国内完成。对于Asimov芯片,制造将转向台积电,但团队致力于尽可能保持其余生产链在美国。
未来展望
Agrawal强调,基于经济性和性能销售物理基础设施——而不是将其与专有API或商业模式捆绑——是Positron在怀疑论市场中获得信誉的部分原因。他表示:"如果你无法基于硬件的经济性说服客户部署你的硬件,你就不会盈利。"
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。