如今,大多数组织都在准备迎接一个人工智能无处不在的世界。这种发展需要业务和技术领导者以对新技术能力、利用新技术的技术技能的理解来装备他们的组织,并关注传统IT工作流的新方法。但缺乏人工智能技能是采用人工智能的最大障碍之一。尽管从大学毕业的专业数据科学家和人工智能从业者的数量达到了创纪录的水平,但企业在寻找和吸引优秀人才方面仍然面临着巨大的困难,这使得人工智能提升技能项目成为优先考虑的项目。
对于一个组织来说,对人工智能世界来说,提高技能意味着什么?
每一家企业最终都将成为一个人工智能企业。 每个企业都知道它需要提高员工的人工智能技能。 然而,各组织难以确定人工智能技能的提高意味着什么,以及必须采取哪些具体行动来发展这些技能。 对于一个组织来说,对人工智能世界来说,提高技能意味着什么?
人工智能并不是单一的。 它不是由一组技能定义的,也不是由组织中的单一角色定义的。
有些技能是相对简单和基础的,必须在整个组织中广泛发展。 另一些则更为复杂,集中在较小的高技能专业群体中。 了解具有多种技能的多个角色如何在一个以最终结果为重点的统一框架中对其工作进行调整和编排是至关重要的。
建立人工智能知识、上下文人工智能知识和人工智能解决方案构建能力
开发提高员工技能的程序的组织应该从所有人的基本要素开始,深入到特定角色的更复杂的专业化层次,重点关注技能进步。 我们看到这种技能的进步是由三个主要层次构成的:人工智能知识、上下文人工智能知识和人工智能解决方案构建能力。
人工智能扫盲
这些技能应在整个组织中得到广泛发展,重点是对数据的概念理解、与启用人工智能或由人工智能驱动的工具进行交互的能力以及在组织中为人工智能确定机会的能力。
这些目标应针对技术和非技术专业人员,他们应能够:
上下文人工智能知识
下一层次的技能需要拥抱人工智能技术能力并将其注入其他领域。 重点是利用人工智能技术开发领域战略,管理输入和使用预构建的人工智能模型的输出。 在这一阶段,一些技能应该在技术和非技术团队中开发,与开发、数据工程和数据科学家一起开发。
各组织需要能够:
构建人工智能解决方案
下一阶段的技能侧重于构建 AI解决方案和开发管理端到端 AI生产流程所需的技能。 数据科学角色是人工智能生产周期的核心,其他业务和技术利益相关者在不同阶段扮演着重要角色。 数据科学家及其相关利益攸关方通常:
人工智能可以为组织带来巨大的机会和利益,这需要技能开发计划,以确保一致性和有意的结果。 人工智能技能发展的指令性方法是成功的关键。
了解更多IBM 数据与AI解决方案请访问:
好文章,需要你的鼓励
NVIDIA研究团队开发出名为Lyra的AI系统,能够仅凭单张照片生成完整3D场景,用户可自由切换观察角度。该技术采用创新的"自蒸馏"学习方法,让视频生成模型指导3D重建模块工作。系统还支持动态4D场景生成,在多项测试中表现优异。这项技术将大大降低3D内容创作门槛,为游戏开发、电影制作、VR/AR应用等领域带来重大突破。
生物技术公司SpotitEarly开发了一种独特的居家癌症筛查方法,结合训练有素的比格犬嗅觉能力和AI技术分析人体呼气样本。该公司研究显示,18只训练犬能以94%的准确率检测出早期癌症。用户只需在家收集呼气样本并寄送至实验室,由训练犬识别癌症特异性气味,AI平台验证犬类行为。公司计划明年通过医师网络推出筛查套件,单项癌症检测约250美元。
谷歌DeepMind团队创新性地让Gemini 2.5模型在无需训练的情况下学会理解卫星多光谱图像。他们将复杂的12波段卫星数据转换为6张可理解的伪彩色图像,配以详细文字说明,使通用AI模型能够准确分析遥感数据。在多个基准测试中超越现有模型,为遥感领域AI应用开辟了全新道路。