如今,大多数组织都在准备迎接一个人工智能无处不在的世界。这种发展需要业务和技术领导者以对新技术能力、利用新技术的技术技能的理解来装备他们的组织,并关注传统IT工作流的新方法。但缺乏人工智能技能是采用人工智能的最大障碍之一。尽管从大学毕业的专业数据科学家和人工智能从业者的数量达到了创纪录的水平,但企业在寻找和吸引优秀人才方面仍然面临着巨大的困难,这使得人工智能提升技能项目成为优先考虑的项目。
对于一个组织来说,对人工智能世界来说,提高技能意味着什么?
每一家企业最终都将成为一个人工智能企业。 每个企业都知道它需要提高员工的人工智能技能。 然而,各组织难以确定人工智能技能的提高意味着什么,以及必须采取哪些具体行动来发展这些技能。 对于一个组织来说,对人工智能世界来说,提高技能意味着什么?
人工智能并不是单一的。 它不是由一组技能定义的,也不是由组织中的单一角色定义的。
有些技能是相对简单和基础的,必须在整个组织中广泛发展。 另一些则更为复杂,集中在较小的高技能专业群体中。 了解具有多种技能的多个角色如何在一个以最终结果为重点的统一框架中对其工作进行调整和编排是至关重要的。
建立人工智能知识、上下文人工智能知识和人工智能解决方案构建能力
开发提高员工技能的程序的组织应该从所有人的基本要素开始,深入到特定角色的更复杂的专业化层次,重点关注技能进步。 我们看到这种技能的进步是由三个主要层次构成的:人工智能知识、上下文人工智能知识和人工智能解决方案构建能力。
人工智能扫盲
这些技能应在整个组织中得到广泛发展,重点是对数据的概念理解、与启用人工智能或由人工智能驱动的工具进行交互的能力以及在组织中为人工智能确定机会的能力。
这些目标应针对技术和非技术专业人员,他们应能够:
上下文人工智能知识
下一层次的技能需要拥抱人工智能技术能力并将其注入其他领域。 重点是利用人工智能技术开发领域战略,管理输入和使用预构建的人工智能模型的输出。 在这一阶段,一些技能应该在技术和非技术团队中开发,与开发、数据工程和数据科学家一起开发。
各组织需要能够:
构建人工智能解决方案
下一阶段的技能侧重于构建 AI解决方案和开发管理端到端 AI生产流程所需的技能。 数据科学角色是人工智能生产周期的核心,其他业务和技术利益相关者在不同阶段扮演着重要角色。 数据科学家及其相关利益攸关方通常:
人工智能可以为组织带来巨大的机会和利益,这需要技能开发计划,以确保一致性和有意的结果。 人工智能技能发展的指令性方法是成功的关键。
了解更多IBM 数据与AI解决方案请访问:
好文章,需要你的鼓励
LibreOffice 25.8版本以"更智能、更快速、更可靠"为特色正式发布。新版本在多个方面实现性能优化,包括启动速度、文档滚动和文件打开速度的显著提升。该版本增强了对微软Office文档格式的兼容性,改进了连字符处理和字体兼容性,Calc表格组件新增十多个函数以更好支持Excel文件导入。值得注意的是,LibreOffice 25.8首次支持PDF 2.0格式导出,并具备PDF数字加密和签名功能。新版本提高了系统要求,不再支持Windows 7/8系列和32位系统。
谷歌DeepMind团队开发出ViNT视觉导航系统,让机器人像人类一样仅通过"看"就能在陌生环境中导航。该系统模仿ChatGPT的学习方式,通过分析600万个导航轨迹掌握通用导航能力,在未知环境中的成功率达87%。这一突破将推动物流配送、家庭服务、搜救等领域的机器人应用发展。
微软AI首席执行官苏莱曼发文称,研究AI福利和意识"既不成熟又危险",认为这会加剧人类对AI的不健康依赖。而Anthropic、OpenAI等公司正积极研究AI意识问题,招聘相关研究人员。业界对AI是否会产生主观体验及其权利问题分歧严重。前OpenAI员工认为可以同时关注多个问题,善待AI模型成本低且有益。随着AI系统改进,关于AI权利和意识的辩论预计将升温。
谷歌DeepMind推出AlphaFold3,革命性提升分子结构预测能力。该AI模型采用创新扩散网络架构,能够精确预测蛋白质与DNA、RNA、药物等分子的相互作用,准确率比传统方法提高50%以上。这一突破将显著加速新药开发,推动基础科学研究,并通过免费开放服务促进全球科研合作,标志着生命科学研究进入AI驱动的新时代。