医学影像是一个涵盖多种不同技术的广泛概念。在开发用于增强 X 射线和乳腺摄影的 AI 工具之后,法国初创公司 Gleamer 现在致力于攻克磁共振成像 (MRI) 领域。
为避免从零开始,Gleamer 收购了两家已在 AI 驱动的 MRI 分析领域有所建树的初创公司:Pixyl 和 Caerus Medical。
Gleamer 是第二波尝试利用人工智能改进医学影像的初创企业之一。2014 或 2015 年,许多科技创始人围绕这一主题创建了初创公司。虽然大多数公司都未能成功,但该领域已经出现了一些整合。例如,Zebra Medical Vision 和 Arterys 分别被 Nanox 和 Tempus 收购。
成立于 2017 年的 Gleamer 一直致力于为放射科医生开发 AI 助手,这是一种医学影像的副驾驶。通过 Gleamer,放射科医生在解读医学影像时理论上可以提高诊断准确性。
该初创公司已经说服了 45 个国家的 2,000 家机构使用其软件解决方案。总体而言,Gleamer 已处理了 3,500 万次检查。该公司的骨骼创伤解读产品已获得 CE 和 FDA 认证。在欧洲,该公司还提供专门针对胸部 X 射线、骨科和骨龄测量的 CE 认证产品。
"不幸的是,放射学领域的一刀切方法并不可行," Gleamer 联合创始人兼 CEO Christian Allouche 对 TechCrunch 表示。"要开发一个涵盖所有医学影像并达到医生期望性能水平的大型模型是非常复杂的。"
这就是为什么该公司成立了专注于乳腺摄影和 CT 扫描的小型内部团队。"三周前我们发布了筹备了 18 个月的乳腺摄影产品," Allouche 说。该产品基于一个经过 150 万张乳腺摄影图像训练的专有 AI 模型。
"我们与法国政府的 GPU 集群 Jean Zay 建立了合作伙伴关系," Allouche 说。该公司还在研究癌症 CT 扫描。
那么 MRI 呢?"MRI 是一个不同的技术领域," Allouche 说。"MRI 涉及很多任务。不仅仅是检测,还包括分割、检测、特征化、分类、多序列成像。"
这就是为什么 Gleamer 收购了两家在这个领域工作多年的小型初创公司,以加快发展。Gleamer 没有透露交易条款。
"这两家公司将成为我们的两个 MRI 平台,我们的明确目标是在未来两到三年内覆盖所有使用场景," Allouche 说。
预防性医学影像
虽然 Gleamer 的模型显示出有前途的结果,但它们还不够完美。例如,通过该公司的新乳腺摄影模型,该初创公司声称可以检测出五分之四的癌症。相比之下,没有 AI 辅助的人类放射科医生通常能识别出五分之三的癌症病例。
然而,像 Gleamer 这样的工具带来的生产力提升可能会彻底改变医学影像。未被发现的肿瘤很可能会在几个月后的随访检查中显现。
"在不久的将来,我认为我们都将获得保险公司支付的常规全身 MRI 检查 — 因为它们不会产生辐射," Allouche 说。
然而,在一些城市,放射科医生已经不足以满足反应性影像的需求。如果行业转向预防性影像,AI 工具将变得不可或缺。
Gleamer 的 CEO 认为 AI 可以成为一个"协调和分类"工具。大多数医学影像检查是为了排除某些诊断。"因此,我们确实需要用一个非常可靠的 AI 模型来自动化完成这些工作,该模型的灵敏度要远高于人类," Allouche 说。
好文章,需要你的鼓励
谷歌Agent Development Kit(ADK)革新了AI应用开发模式,采用事件驱动的运行时架构,将代理、工具和持久化状态整合为统一应用。ADK以Runner为核心,通过事件循环处理用户请求、模型调用和外部工具执行。执行逻辑层管理LLM调用和工具回调,服务层提供会话、文件存储等持久化能力。这种架构支持多步推理、实时反馈和状态管理,为构建超越简单聊天界面的生产级AI应用提供了完整框架。
上海AI实验室联合团队开发RoboVIP系统,通过视觉身份提示技术解决机器人训练数据稀缺问题。该系统能生成多视角、时间连贯的机器人操作视频,利用夹爪状态信号精确识别交互物体,构建百万级视觉身份数据库。实验显示,RoboVIP显著提升机器人在复杂环境中的操作成功率,为机器人智能化发展提供重要技术突破。
苹果在iOS 26中推出全新游戏应用,为iPhone、iPad和Mac用户提供个性化的游戏中心。该应用包含五个主要版块:主页展示最近游戏和推荐内容,Arcade专区提供超过200款无广告游戏,好友功能显示Game Center动态并支持游戏挑战,资料库可浏览已安装游戏并提供筛选选项,搜索功能支持按类别浏览。iOS 26.2版本还增加了游戏手柄导航支持,为游戏玩家提供更便捷的操作体验。
英伟达研究团队提出GDPO方法,解决AI多目标训练中的"奖励信号坍缩"问题。该方法通过分别评估各技能再综合考量,避免了传统GRPO方法简单相加导致的信息丢失。在工具调用、数学推理、代码编程三大场景测试中,GDPO均显著优于传统方法,准确率提升最高达6.3%,且训练过程更稳定。该技术已开源并支持主流AI框架。