在一则令人意外的公告中,新任 FDA 专员 Martin Makary 博士宣布,FDA 已完成了一个基于生成式 AI 的药品审评加速系统试点,并计划在 6 月底前在整个机构内部推广此系统。
Makary 博士在声明中表示,“我们的首个人工智能辅助科学审查试点取得的成功令我大为震惊。我们需要珍惜科学家的时间,并减少历来占据审查过程中大量非生产性忙碌工作的环节。全机构推广这些能力对加速新疗法的审查周期具有巨大潜力。”
公告中关于该技术或试点的详细信息非常有限。文中提到,由 Jeremy Walsh 监督此次推广工作,他几天前刚刚以 FDA 首任首席 AI 官员的身份加入该机构。Walsh 曾在政府承包商 Booz Allen Hamilton 工作 14 年担任首席技术专家,其中包括与 FDA 合作签订合约。WIRED 杂志昨天通过一篇独家报道引用匿名消息源披露,近期 OpenAI 的一个小团队曾与 FDA 及政府效率部( DOGE )的两位相关人员会面,Walsh 也参与了讨论。他们将该项目称为 “cderGPT”,这很可能是指 FDA 的药品审评中心。
尽管业内人士无疑会欢迎更快的药品审查速度,但这一公告也引发了关于患者安全的疑问。生成式 AI 众所周知容易出错,而此次推广时间表之快 —— 对于一个历来对来自 AI 工具的药品数据信任度如此谨慎的机构来说,这颇具讽刺意味。
Makary 博士在为缩短时间表进行辩护时强调了支持创新的紧迫性。
他说:“多年来我们不断在各类框架、会议和小组讨论中谈论 AI 能力,但我们不能再只停留在讨论上。现在是采取行动的时候了。将曾经需要数天完成的任务缩短到几分钟完成,这样的机会实在是太重要而不能拖延。”
这种紧迫感很可能也源于 FDA 最近宣布的裁员计划,这引发了对药品审批周期可能延迟的担忧。在本周波士顿举行的 AAPS 全国生物技术会议上,现任 MCRA 的前 FDA 员工 Alex Cadotte 博士讨论了这些裁员对审批周期的影响。
他解释说:“据我所知,至少从公开渠道来看,近期以及计划中的裁员行动基本上都是面向后勤支持人员,而非审查人员。因此,其直接影响可能不会马上显现,但从长远来看可能会有所体现。不过,总的来说,如果你有一个申请在 FDA 那里审查,从事审查的人员很可能不受影响。”
具有讽刺意味的是,Cadotte 指出,FDA 中许多已被裁员的员工曾是 AI 模型和机器学习方面的专家。
他说:“在 2 月 14 日的裁员中,其中 75% 的 AI 专家被永久解雇。许多人受邀返聘但均拒绝。这主要是因为他们进入了工业界,找到了更有利可图且更稳定的职位。我认为,这显然对我们所有人来说都是一个重大损失,因为现在 FDA 在了解这些模型方面的能力明显受到质疑。”
好文章,需要你的鼓励
OpenAI和微软宣布签署一项非约束性谅解备忘录,修订双方合作关系。随着两家公司在AI市场竞争客户并寻求新的基础设施合作伙伴,其关系日趋复杂。该协议涉及OpenAI从非营利组织向营利实体的重组计划,需要微软这一最大投资者的批准。双方表示将积极制定最终合同条款,共同致力于为所有人提供最佳AI工具。
中山大学团队针对OpenAI O1等长思考推理模型存在的"长度不和谐"问题,提出了O1-Pruner优化方法。该方法通过长度-和谐奖励机制和强化学习训练,成功将模型推理长度缩短30-40%,同时保持甚至提升准确率,显著降低了推理时间和计算成本,为高效AI推理提供了新的解决方案。
中国科技企业发布了名为R1的人形机器人,直接对标特斯拉的Optimus机器人产品。这款新型机器人代表了中国在人工智能和机器人技术领域的最新突破,展现出与国际巨头竞争的实力。R1机器人的推出标志着全球人形机器人市场竞争进一步加剧。
上海AI实验室研究团队深入调查了12种先进视觉语言模型在自动驾驶场景中的真实表现,发现这些AI系统经常在缺乏真实视觉理解的情况下生成看似合理的驾驶解释。通过DriveBench测试平台的全面评估,研究揭示了现有评估方法的重大缺陷,并为开发更可靠的AI驾驶系统提供了重要指导。