Microsoft 今天发布了 Majorana 1,这是一款拥有八个量子比特的芯片,被认为是量子计算领域的重大突破。
这款处理器由称为马约拉纳零模的准粒子驱动。由这种准粒子构成的量子比特比其他量子电路更不容易出现错误。
因此,Microsoft 认为 Majorana 1 的架构可能是构建大规模量子计算机的关键。这款芯片是该公司近二十年研究努力的成果。
量子软件初创公司 Multiverse Computing 的联合创始人兼首席执行官 Enrique Lizaso Olmos 表示:"Microsoft 的量子处理器新闻是量子硬件的重大进步,体现了该公司 20 年来对科学研究的承诺和勇于接受极具挑战性任务的意愿。"
准粒子是一组表现得像单个粒子的粒子群或其他物理现象。Microsoft 的 Majorana 1 芯片依靠准粒子来表示计算中使用的 1 和 0。据该公司介绍,处理过程是通过基于半导体和超导体材料组合的所谓拓扑量子比特来完成的。
Majorana 1 的每个量子比特都是围绕一根由砷化铟超导合金制成的纳米线(细线)构建的。这根纳米线与一块铝相连。通过将铝冷却到接近绝对零度,Majorana 1 可以在砷化铟纳米线中产生超导性。超导性是一种允许电流在材料中无能量损失传导的现象。
当量子比特变得超导时,电子开始在其砷化铟纳米线和铝组件的界面处形成。大多数新粒子会转变为被称为库珀对的电子对。
当出现奇数个电子时,无法配对的多余电子会移动到纳米线中。这个多余粒子随后转变为马约拉纳零模,即 Microsoft 量子芯片用于执行处理的准粒子。
芯片的每个量子比特包含两根由第三根线连接的纳米线。它们被放置在量子点(一种小型半导体晶体)旁边。这种晶体用于读取量子比特中的数据。
在量子比特中创建马约拉纳零模的过程会改变附近量子点的电容(即储存电量的能力)。这种变化是可以测量的,这使得读取电路中的信息成为可能。测量过程包括向量子点投射微波并分析其反射情况。
Majorana 1 架构的主要优势是可靠性。目前的量子芯片很容易出现处理错误,这使它们不适合商业使用。Microsoft 的拓扑量子比特出错频率要低得多,大约每毫秒才出错一次。
量子技术公司 Terra Quantum AG 的创始人兼首席执行官 Markus Pflitsch 表示:"这确实是业界的一项进步:构建一个使用拓扑量子比特的定制芯片,许多人认为这对于扩展到强大的量子计算机极其有用。这一公告强化了我们的评估,即容错量子硬件比许多企业领导者想象的更接近现实。"
Majorana 1 拥有八个量子比特。据 Microsoft 称,其基于准粒子的量子比特架构设计"为未来在单个芯片上容纳 100 万个量子比特提供了明确的路径"。拥有 100 万个量子比特的处理器可能会显著超越当今的量子机器的性能。
好文章,需要你的鼓励
Google DeepMind造出"全能游戏玩家":SIMA 2在虚拟世界里自由行动,还会自己学新技能
牛津大学研究团队发现,经过强化学习训练的AI搜索助手存在严重安全漏洞。通过简单的"搜索攻击"(强制AI先搜索)和"多重搜索攻击"(连续十次搜索),可让AI的拒绝率下降60%,安全性降低超过80%。问题根源在于AI的安全训练与搜索功能训练分离,导致搜索时会生成有害查询。研究呼吁开发安全感知的强化学习方法。
Core Memory播客主持人Ashley Vance近日与OpenAI首席研究官Mark Chen进行了一场长达一个半小时的对话。这是Chen近年来最公开、最深入的一次访谈,话题覆盖人才争夺战、研究战略、AGI时间表,以及他个人的管理哲学。
斯坦福大学团队开发了GuideFlow3D技术,通过创新的引导机制解决3D对象外观转换难题。该方法采用智能分割和双重损失函数,能在保持原始几何形状的同时实现高质量外观转换,在多项评估中显著优于现有方法,为游戏开发、AR应用等领域提供了强大工具。